Skip to content

Commit

Permalink
update readme
Browse files Browse the repository at this point in the history
  • Loading branch information
kk928290341 committed Nov 9, 2024
1 parent 3d2c29c commit dcfcbe5
Show file tree
Hide file tree
Showing 6 changed files with 87 additions and 85 deletions.
72 changes: 36 additions & 36 deletions configs/det/dbnet/README.md

Large diffs are not rendered by default.

72 changes: 36 additions & 36 deletions configs/det/dbnet/README_CN.md

Large diffs are not rendered by default.

9 changes: 5 additions & 4 deletions configs/rec/crnn/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -47,8 +47,8 @@ According to our experiments, the training (following the steps in [Model Traini

<div align="center">

| **model name** | **backbone** | **cards** | **batch size** | **train dataset** | **model params** | **jit level** | **graph compile** | **ms/step** | **img/s** | **avg eval accuracy** | **recipe** |**download** |
|:--------------:|:---------:|:--------------:| :-----: |:-----------------:|:----------------:|:---------------------:|:-------:|:-----------:|:---------:|:---------------------:|:-------------------------:|:----------------------------------------------------:|
| **model name** | **backbone** | **cards** | **batch size** | **train dataset** | **model params** | **jit level** | **graph compile** | **ms/step** | **img/s** | **avg eval accuracy** | **recipe** | **weight** |
|:--------------:|:---------:|:--------------:| :-----: |:-----------------:|:----------------:|:---------------------:|:-------:|:-----------:|:---------:|:---------------------:|:-------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| CRNN | VGG7 | 8 | 16 | MJ+ST | 8.72 M | O2| 67.18 s | 22.06 | 5802.71 | 82.03% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_vgg7.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_vgg7-ea7e996c.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_vgg7-ea7e996c-573dbd61.mindir) |
| CRNN | ResNet34_vd | 8 | 64 | MJ+ST | 24.48 M | O2| 201.54 s | 76.48 | 6694.84 | 84.45% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_resnet34.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34-83f37f07.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34-83f37f07-eb10a0c9.mindir) |
</div>
Expand All @@ -66,7 +66,7 @@ According to our experiments, the training (following the steps in [Model Traini
#### Experiments are tested on ascend 910* with mindspore 2.3.1 graph mode
<div align="center">

| **model name** | **backbone** | **cards** | **batch size** | **train dataset** | **model params** | **jit level** | **graph compile** | **ms/step** | **img/s** | **avg eval accuracy** |**recipe** | **download** |
| **model name** | **backbone** | **cards** | **batch size** | **train dataset** | **model params** | **jit level** | **graph compile** | **ms/step** | **img/s** | **avg eval accuracy** |**recipe** | **weight** |
|:--------------:|:---------:|:--------------:|:------------:|:-----------------:|:----------------:|:---------------------:|:----------------------------:|:-----------:|:---------:|:---------------------:|:------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------:|
| CRNN | VGG7 | 8 | 16 | MJ+ST | 8.72 M | O2 | 94.36 s | 14.76 | 8672.09 | 81.31% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_vgg7.yaml) | [ckpt](https://download-mindspore.osinfra.cn/toolkits/mindocr/crnn/crnn_vgg7-6faf1b2d-910v2.ckpt) |
</div>
Expand Down Expand Up @@ -397,9 +397,10 @@ mpirun --allow-run-as-root -n 4 python tools/train.py --config configs/rec/crnn/

After training, evaluation results on the benchmark test set are as follows, where we also provide the model config and pretrained weights.

Experiments are tested on ascend 910 with mindspore 2.3.1 graph mode
<div align="center">

| **model name** | **backbone** | **cards** | **batch size** | **language** | **jit level** | **graph compile** | **ms/step** | **img/s** | **scene** | **web** | **document** | **recipe** | **download** |
| **model name** | **backbone** | **cards** | **batch size** | **language** | **jit level** | **graph compile** | **ms/step** | **img/s** | **scene** | **web** | **document** | **recipe** | **weight** |
|:--------------:|:------------:|:--------------:|:-----------------:|:------------:|:---------:|:-----------------:|:---------:|:-------:|:------------:|:-----------:|:---------:|:------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| CRNN | ResNet34_vd | 4| 256| Chinese | O2 | 203.48 s | 38.01 | 1180 | 60.45% | 65.95% | 97.68% | [crnn_resnet34_ch.yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_resnet34_ch.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34_ch-7a342e3c.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34_ch-7a342e3c-105bccb2.mindir) |
</div>
Expand Down
7 changes: 4 additions & 3 deletions configs/rec/crnn/README_CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ Table Format:

<div align="center">

| **model name** | **backbone** | **cards** | **batch size** | **train dataset** | **model params** | **jit level** | **graph compile** | **ms/step** | **img/s** | **avg eval accuracy** | **recipe** |**download** |
| **model name** | **backbone** | **cards** | **batch size** | **train dataset** | **model params** | **jit level** | **graph compile** | **ms/step** | **img/s** | **avg eval accuracy** | **recipe** |**weight** |
|:--------------:|:---------:|:--------------:| :-----: |:-----------------:|:----------------:|:---------------------:|:-------:|:-----------:|:---------:|:---------------------:|:-------------------------:|:----------------------------------------------------:|
| CRNN | VGG7 | 8 | 16 | MJ+ST | 8.72 M | O2| 67.18 s | 22.06 | 5802.71 | 82.03% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_vgg7.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_vgg7-ea7e996c.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_vgg7-ea7e996c-573dbd61.mindir) |
| CRNN | ResNet34_vd | 8 | 64 | MJ+ST | 24.48 M | O2| 201.54 s | 76.48 | 6694.84 | 84.45% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_resnet34.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34-83f37f07.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34-83f37f07-eb10a0c9.mindir) |
Expand All @@ -70,7 +70,7 @@ Table Format:

<div align="center">

| **model name** | **backbone** | **cards** | **batch size** | **train dataset** | **model params** | **jit level** | **graph compile** | **ms/step** | **img/s** | **avg eval accuracy** |**recipe** | **download** |
| **model name** | **backbone** | **cards** | **batch size** | **train dataset** | **model params** | **jit level** | **graph compile** | **ms/step** | **img/s** | **avg eval accuracy** |**recipe** | **weight** |
|:--------------:|:---------:|:--------------:|:------------:|:-----------------:|:----------------:|:---------------------:|:----------------------------:|:-----------:|:---------:|:---------------------:|:------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------:|
| CRNN | VGG7 | 8 | 16 | MJ+ST | 8.72 M | O2 | 94.36 s | 14.76 | 8672.09 | 81.31% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_vgg7.yaml) | [ckpt](https://download-mindspore.osinfra.cn/toolkits/mindocr/crnn/crnn_vgg7-6faf1b2d-910v2.ckpt) |
</div>
Expand Down Expand Up @@ -399,9 +399,10 @@ mpirun --allow-run-as-root -n 4 python tools/train.py --config configs/rec/crnn/
### 评估结果和预训练权重
模型训练完成后,在测试集不同场景上的准确率评估结果如下。相应的模型配置和预训练权重可通过表中链接下载。

在采用图模式的ascend 910上实验结果,mindspore版本为2.3.1
<div align="center">

| **model name** | **backbone** | **cards** | **batch size** | **language** | **jit level** | **graph compile** | **ms/step** | **img/s** | **scene** | **web** | **document** | **recipe** | **download** |
| **model name** | **backbone** | **cards** | **batch size** | **language** | **jit level** | **graph compile** | **ms/step** | **img/s** | **scene** | **web** | **document** | **recipe** | **weight** |
|:--------------:|:------------:|:--------------:|:-----------------:|:------------:|:---------:|:-----------------:|:---------:|:-------:|:------------:|:-----------:|:---------:|:------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| CRNN | ResNet34_vd | 4| 256| Chinese | O2 | 203.48 s | 38.01 | 1180 | 60.45% | 65.95% | 97.68% | [crnn_resnet34_ch.yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_resnet34_ch.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34_ch-7a342e3c.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34_ch-7a342e3c-105bccb2.mindir) |
</div>
Expand Down
6 changes: 3 additions & 3 deletions configs/rec/svtr/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -45,10 +45,10 @@ According to our experiments, the evaluation results on public benchmark dataset

<div align="center">

| **model name** | **cards** | **batch size** |**jit level** | **graph compile** | **ms/step** | **img/s** | **avg accuracy** | **recipe** | **download** |
| **model name** | **cards** | **batch size** |**jit level** | **graph compile** | **ms/step** | **img/s** | **avg accuracy** | **recipe** | **weight** |
|:--------------:|:---------:|:--------------:|:----------------:|:-----------------:|:-----------------:|:-------------:|:---------:|:---------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| SVTR-Tiny | 4 | 512 |O2| 226.86 s | 49.38 ms/step | 4560 | 90.23% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/svtr/svtr_tiny.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/svtr/svtr_tiny-950be1c3.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/svtr/svtr_tiny-950be1c3-86ece8c8.mindir) |
| SVTR-Tiny-8P | 8 | 512 |O2| 226.86 s | 55.16 ms/step | 9840 | 90.32% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/svtr/svtr_tiny_8p.yaml) | [ckpt](https://download-mindspore.osinfra.cn/toolkits/mindocr/svtr/svtr_tiny_8p-0afc75d6.ckpt) \| [mindir](https://download-mindspore.osinfra.cn/toolkits/mindocr/svtr/svtr_tiny_8p-0afc75d6-255191ef.mindir) |
| SVTR-Tiny-8P | 8 | 512 |O2| 230.74 s | 55.16 ms/step | 9840 | 90.32% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/svtr/svtr_tiny_8p.yaml) | [ckpt](https://download-mindspore.osinfra.cn/toolkits/mindocr/svtr/svtr_tiny_8p-0afc75d6.ckpt) \| [mindir](https://download-mindspore.osinfra.cn/toolkits/mindocr/svtr/svtr_tiny_8p-0afc75d6-255191ef.mindir) |
</div>

Detailed accuracy results for each benchmark dataset
Expand Down Expand Up @@ -377,7 +377,7 @@ After training, evaluation results on the benchmark test set are as follows, whe

<div align="center">

| **model name** | **cards** | **batch size** | **language** | **jit level** | **graph compile** | **ms/step** | **img/s** | **scene** | **web** | **document** | **recipe** | **download** |
| **model name** | **cards** | **batch size** | **language** | **jit level** | **graph compile** | **ms/step** | **img/s** | **scene** | **web** | **document** | **recipe** | **weight** |
|:--------------:|:---------:|:--------------:| :--------: |:-------------:|:-----------------:|:---------:|:-------:|:------------:|:-----------:|:---------:|:----------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| SVTR-Tiny | 4 | 256 | Chinese | O2 | 235.1 s| 37.75 | 1580 | 65.93% | 69.64% | 98.01% | [svtr_tiny_ch.yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/svtr/svtr_tiny_ch.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/svtr/svtr_tiny_ch-2ee6ade4.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/svtr/svtr_tiny_ch-2ee6ade4-3e495768.mindir) |
</div>
Expand Down
6 changes: 3 additions & 3 deletions configs/rec/svtr/README_CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -44,10 +44,10 @@ Table Format:

<div align="center">

| **model name** | **cards** | **batch size** |**jit level** | **graph compile** | **ms/step** | **img/s** | **avg accuracy** | **recipe** | **download** |
| **model name** | **cards** | **batch size** |**jit level** | **graph compile** | **ms/step** | **img/s** | **avg accuracy** | **recipe** | **weight** |
|:--------------:|:---------:|:--------------:|:----------------:|:-----------------:|:-----------------:|:-------------:|:---------:|:---------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| SVTR-Tiny | 4 | 512 |O2| 226.86 s | 49.38 ms/step | 4560 | 90.23% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/svtr/svtr_tiny.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/svtr/svtr_tiny-950be1c3.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/svtr/svtr_tiny-950be1c3-86ece8c8.mindir) |
| SVTR-Tiny-8P | 8 | 512 |O2| 226.86 s | 55.16 ms/step | 9840 | 90.32% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/svtr/svtr_tiny_8p.yaml) | [ckpt](https://download-mindspore.osinfra.cn/toolkits/mindocr/svtr/svtr_tiny_8p-0afc75d6.ckpt) \| [mindir](https://download-mindspore.osinfra.cn/toolkits/mindocr/svtr/svtr_tiny_8p-0afc75d6-255191ef.mindir) |
| SVTR-Tiny-8P | 8 | 512 |O2| 230.74 s | 55.16 ms/step | 9840 | 90.32% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/svtr/svtr_tiny_8p.yaml) | [ckpt](https://download-mindspore.osinfra.cn/toolkits/mindocr/svtr/svtr_tiny_8p-0afc75d6.ckpt) \| [mindir](https://download-mindspore.osinfra.cn/toolkits/mindocr/svtr/svtr_tiny_8p-0afc75d6-255191ef.mindir) |
</div>

在各个基准数据集上的准确率
Expand Down Expand Up @@ -373,7 +373,7 @@ mpirun --allow-run-as-root -n 4 python tools/train.py --config configs/rec/svtr/

<div align="center">

| **model name** | **cards** | **batch size** | **language** | **jit level** | **graph compile** | **ms/step** | **img/s** | **scene** | **web** | **document** | **recipe** | **download** |
| **model name** | **cards** | **batch size** | **language** | **jit level** | **graph compile** | **ms/step** | **img/s** | **scene** | **web** | **document** | **recipe** | **weight** |
|:--------------:|:---------:|:--------------:| :--------: |:-------------:|:-----------------:|:---------:|:-------:|:------------:|:-----------:|:---------:|:----------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| SVTR-Tiny | 4 | 256 | Chinese | O2 | 235.1 s| 65.93% | 37.75 | 1580 | 69.64% | 98.01% | [svtr_tiny_ch.yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/svtr/svtr_tiny_ch.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/svtr/svtr_tiny_ch-2ee6ade4.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/svtr/svtr_tiny_ch-2ee6ade4-3e495768.mindir) |
</div>
Expand Down

0 comments on commit dcfcbe5

Please sign in to comment.