Skip to content

Commit

Permalink
update readme
Browse files Browse the repository at this point in the history
  • Loading branch information
kk928290341 committed Nov 8, 2024
1 parent 9f8fa81 commit 3d2c29c
Show file tree
Hide file tree
Showing 6 changed files with 152 additions and 149 deletions.
84 changes: 42 additions & 42 deletions configs/det/dbnet/README.md

Large diffs are not rendered by default.

84 changes: 42 additions & 42 deletions configs/det/dbnet/README_CN.md

Large diffs are not rendered by default.

42 changes: 22 additions & 20 deletions configs/rec/crnn/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -43,32 +43,32 @@ Table Format:

According to our experiments, the training (following the steps in [Model Training](#32-model-training)) performance and evaluation (following the steps in [Model Evaluation](#33-model-evaluation)) accuracy are as follows:

#### Performance tested on ascend 910 with graph mode
#### Experiments are tested on ascend 910 with mindspore 2.3.1 graph mode

<div align="center">

| **Model** | **Cards** | **Backbone** | **Train Dataset** | **Model Params** | **Batch size** | **graph compile** | **jit level** | **Step Time** | **FPS** | **Avg Eval Accuracy** | **Recipe** | **Download** |
| :-----: |:---------:| :-----: | :-----: | :-----: | :-----: |:-----------------:|:-------:|:-------------:| :-----: | :-----: | :-----: | :-----: |
| CRNN | 8 | VGG7 | MJ+ST | 8.72 M | 16 | 67.18 s | O2| 22.06 ms/step | 5802.71 | 82.03% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_vgg7.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_vgg7-ea7e996c.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_vgg7-ea7e996c-573dbd61.mindir) |
| CRNN | 8 | ResNet34_vd | MJ+ST | 24.48 M | 64 | 201.54 s | O2| 76.48 ms/step | 6694.84 | 84.45% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_resnet34.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34-83f37f07.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34-83f37f07-eb10a0c9.mindir) |
| **model name** | **backbone** | **cards** | **batch size** | **train dataset** | **model params** | **jit level** | **graph compile** | **ms/step** | **img/s** | **avg eval accuracy** | **recipe** |**download** |
|:--------------:|:---------:|:--------------:| :-----: |:-----------------:|:----------------:|:---------------------:|:-------:|:-----------:|:---------:|:---------------------:|:-------------------------:|:----------------------------------------------------:|
| CRNN | VGG7 | 8 | 16 | MJ+ST | 8.72 M | O2| 67.18 s | 22.06 | 5802.71 | 82.03% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_vgg7.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_vgg7-ea7e996c.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_vgg7-ea7e996c-573dbd61.mindir) |
| CRNN | ResNet34_vd | 8 | 64 | MJ+ST | 24.48 M | O2| 201.54 s | 76.48 | 6694.84 | 84.45% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_resnet34.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34-83f37f07.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34-83f37f07-eb10a0c9.mindir) |
</div>

- Detailed accuracy results for each benchmark dataset (IC03, IC13, IC15, IIIT, SVT, SVTP, CUTE):
<div align="center">

| **Model** | **Backbone** | **IC03_860** | **IC03_867** | **IC13_857** | **IC13_1015** | **IC15_1811** | **IC15_2077** | **IIIT5k_3000** | **SVT** | **SVTP** | **CUTE80** | **Average** |
| :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: |
| CRNN | VGG7 | 94.53% | 94.00% | 92.18% | 90.74% | 71.95% | 66.06% | 84.10% | 83.93% | 73.33% | 69.44% | 82.03% |
| CRNN | ResNet34_vd | 94.42% | 94.23% | 93.35% | 92.02% | 75.92% | 70.15% | 87.73% | 86.40% | 76.28% | 73.96% | 84.45% |
| **model name** | **backbone** | **cards** | **IC03_860** | **IC03_867** | **IC13_857** | **IC13_1015** | **IC15_1811** | **IC15_2077** | **IIIT5k_3000** | **SVT** | **SVTP** | **CUTE80** | **average** |
|:--------------:| :------: |:------------:|:------------:| :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: |:-----------:|
| CRNN | VGG7 |1| 94.53% | 94.00% | 92.18% | 90.74% | 71.95% | 66.06% | 84.10% | 83.93% | 73.33% | 69.44% | 82.03% |
| CRNN | ResNet34_vd |1| 94.42% | 94.23% | 93.35% | 92.02% | 75.92% | 70.15% | 87.73% | 86.40% | 76.28% | 73.96% | 84.45% |
</div>


#### Performance tested on ascend 910* with graph mode
#### Experiments are tested on ascend 910* with mindspore 2.3.1 graph mode
<div align="center">

| **Model** | **Cards** | **Backbone** | **Train Dataset** | **Model Params** | **Batch size** | **graph compile** | **jit level** | **Step Time** | **FPS** | **Avg Eval Accuracy** | **Recipe** | **Download** |
| :-----: |:---------:| :-----: | :-----: | :-----: | :-----: |:-----------------:|:----------------------------:|:-------------:|:------------------------:|:---------------------:| :-----: | :-----: |
| CRNN | 8 | VGG7 | MJ+ST | 8.72 M | 16 | 94.36 s | O2| 14.76 ms/step | 8672.09 | 81.31% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_vgg7.yaml) | [ckpt](https://download-mindspore.osinfra.cn/toolkits/mindocr/crnn/crnn_vgg7-6faf1b2d-910v2.ckpt)|
| **model name** | **backbone** | **cards** | **batch size** | **train dataset** | **model params** | **jit level** | **graph compile** | **ms/step** | **img/s** | **avg eval accuracy** |**recipe** | **download** |
|:--------------:|:---------:|:--------------:|:------------:|:-----------------:|:----------------:|:---------------------:|:----------------------------:|:-----------:|:---------:|:---------------------:|:------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------:|
| CRNN | VGG7 | 8 | 16 | MJ+ST | 8.72 M | O2 | 94.36 s | 14.76 | 8672.09 | 81.31% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_vgg7.yaml) | [ckpt](https://download-mindspore.osinfra.cn/toolkits/mindocr/crnn/crnn_vgg7-6faf1b2d-910v2.ckpt) |
</div>


Expand All @@ -77,12 +77,14 @@ According to our experiments, the training (following the steps in [Model Traini

The inference performance is tested on Mindspore Lite, please take a look at [Mindpore Lite Inference](#6-mindspore-lite-inference) for more details.

Experiments are tested on ascend 310P with mindspore lite 2.3.1 graph mode

<div align="center">

| Device | Env | Model | Backbone | Params | Test Dataset | Batch size | Graph infer 1P (FPS) |
| :----: | :----: | :----: | :----: | :----: | :----: | :----: | :----: |
| Ascend310P | Lite2.0 | CRNN | ResNet34_vd | 24.48 M | IC15 | 1 | 361.09 |
| Ascend310P | Lite2.0 | CRNN | ResNet34_vd | 24.48 M | SVT | 1 | 274.67 |
| model name | backbone | batch size | params | test dataset | img/s |
|:----------:|:----------:|:-----------:|:-------:|:------------:|:------:|
| CRNN | ResNet34_vd | 1 | 24.48 M | IC15 | 361.09 |
| CRNN | ResNet34_vd | 1 | 24.48 M | SVT | 274.67 |

</div>

Expand Down Expand Up @@ -397,9 +399,9 @@ After training, evaluation results on the benchmark test set are as follows, whe

<div align="center">

| **Model** | **Language** | **Context** |**Backbone** | **Scene** | **Web** | **Document** | **Train T.** | **FPS** | **Recipe** | **Download** |
| :-----: | :-----: | :--------: | :--------: | :--------: | :--------: | :--------: | :---------: | :--------: | :---------: | :-----------: |
| CRNN | Chinese | D910x4-MS1.10-G | ResNet34_vd | 60.45% | 65.95% | 97.68% | 647 s/epoch | 1180 | [crnn_resnet34_ch.yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_resnet34_ch.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34_ch-7a342e3c.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34_ch-7a342e3c-105bccb2.mindir) |
| **model name** | **backbone** | **cards** | **batch size** | **language** | **jit level** | **graph compile** | **ms/step** | **img/s** | **scene** | **web** | **document** | **recipe** | **download** |
|:--------------:|:------------:|:--------------:|:-----------------:|:------------:|:---------:|:-----------------:|:---------:|:-------:|:------------:|:-----------:|:---------:|:------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| CRNN | ResNet34_vd | 4| 256| Chinese | O2 | 203.48 s | 38.01 | 1180 | 60.45% | 65.95% | 97.68% | [crnn_resnet34_ch.yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_resnet34_ch.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34_ch-7a342e3c.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34_ch-7a342e3c-105bccb2.mindir) |
</div>

**Notes:**
Expand Down
42 changes: 22 additions & 20 deletions configs/rec/crnn/README_CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -44,48 +44,50 @@ Table Format:

根据我们的实验,训练([模型训练](#32-模型训练))性能和精度评估([模型评估](#33-模型评估))结果如下:

#### 在采用图模式的ascend 910上测试性能
#### 在采用图模式的ascend 910上实验结果,mindspore版本为2.3.1

<div align="center">

| **Model** | **Cards** | **Backbone** | **Train Dataset** | **Model Params** | **Batch size** | **graph compile** | **jit level** | **Step Time** | **FPS** | **Avg Eval Accuracy** | **Recipe** | **Download** |
| :-----: |:---------:| :-----: | :-----: | :-----: | :-----: |:-----------------:|:-------:|:-------------:| :-----: | :-----: | :-----: | :-----: |
| CRNN | 8 | VGG7 | MJ+ST | 8.72 M | 16 | 67.18 s | O2| 22.06 ms/step | 5802.71 | 82.03% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_vgg7.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_vgg7-ea7e996c.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_vgg7-ea7e996c-573dbd61.mindir) |
| CRNN | 8 | ResNet34_vd | MJ+ST | 24.48 M | 64 | 201.54 s | O2| 76.48 ms/step | 6694.84 | 84.45% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_resnet34.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34-83f37f07.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34-83f37f07-eb10a0c9.mindir) |
| **model name** | **backbone** | **cards** | **batch size** | **train dataset** | **model params** | **jit level** | **graph compile** | **ms/step** | **img/s** | **avg eval accuracy** | **recipe** |**download** |
|:--------------:|:---------:|:--------------:| :-----: |:-----------------:|:----------------:|:---------------------:|:-------:|:-----------:|:---------:|:---------------------:|:-------------------------:|:----------------------------------------------------:|
| CRNN | VGG7 | 8 | 16 | MJ+ST | 8.72 M | O2| 67.18 s | 22.06 | 5802.71 | 82.03% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_vgg7.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_vgg7-ea7e996c.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_vgg7-ea7e996c-573dbd61.mindir) |
| CRNN | ResNet34_vd | 8 | 64 | MJ+ST | 24.48 M | O2| 201.54 s | 76.48 | 6694.84 | 84.45% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_resnet34.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34-83f37f07.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34-83f37f07-eb10a0c9.mindir) |
</div>

- 在各个基准数据集(IC03,IC13,IC15,IIIT,SVT,SVTP,CUTE)上的准确率:

<div align="center">

| **Model** | **Backbone** | **IC03_860** | **IC03_867** | **IC13_857** | **IC13_1015** | **IC15_1811** | **IC15_2077** | **IIIT5k_3000** | **SVT** | **SVTP** | **CUTE80** | **Average** |
| :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: |
| CRNN | VGG7 | 94.53% | 94.00% | 92.18% | 90.74% | 71.95% | 66.06% | 84.10% | 83.93% | 73.33% | 69.44% | 82.03% |
| CRNN | ResNet34_vd | 94.42% | 94.23% | 93.35% | 92.02% | 75.92% | 70.15% | 87.73% | 86.40% | 76.28% | 73.96% | 84.45% |
| **model name** | **backbone** | **cards** | **IC03_860** | **IC03_867** | **IC13_857** | **IC13_1015** | **IC15_1811** | **IC15_2077** | **IIIT5k_3000** | **SVT** | **SVTP** | **CUTE80** | **average** |
|:--------------:| :------: |:------------:|:------------:| :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: | :------: |:-----------:|
| CRNN | VGG7 |1| 94.53% | 94.00% | 92.18% | 90.74% | 71.95% | 66.06% | 84.10% | 83.93% | 73.33% | 69.44% | 82.03% |
| CRNN | ResNet34_vd |1| 94.42% | 94.23% | 93.35% | 92.02% | 75.92% | 70.15% | 87.73% | 86.40% | 76.28% | 73.96% | 84.45% |
</div>



#### 在采用图模式的ascend 910*上测试性能
#### 在采用图模式的ascend 910*上实验结果,mindspore版本为2.3.1

<div align="center">

| **Model** | **Cards** | **Backbone** | **Train Dataset** | **Model Params** | **Batch size** | **graph compile** | **jit level** | **Step Time** | **FPS** | **Avg Eval Accuracy** | **Recipe** | **Download** |
| :-----: |:---------:| :-----: | :-----: | :-----: | :-----: |:-----------------:|:----------------------------:|:-------------:|:------------------------:|:---------------------:| :-----: | :-----: |
| CRNN | 8 | VGG7 | MJ+ST | 8.72 M | 16 | 94.36 s | O2| 14.76 ms/step | 8672.09 | 81.31% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_vgg7.yaml) | [ckpt](https://download-mindspore.osinfra.cn/toolkits/mindocr/crnn/crnn_vgg7-6faf1b2d-910v2.ckpt)|
| **model name** | **backbone** | **cards** | **batch size** | **train dataset** | **model params** | **jit level** | **graph compile** | **ms/step** | **img/s** | **avg eval accuracy** |**recipe** | **download** |
|:--------------:|:---------:|:--------------:|:------------:|:-----------------:|:----------------:|:---------------------:|:----------------------------:|:-----------:|:---------:|:---------------------:|:------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------:|
| CRNN | VGG7 | 8 | 16 | MJ+ST | 8.72 M | O2 | 94.36 s | 14.76 | 8672.09 | 81.31% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_vgg7.yaml) | [ckpt](https://download-mindspore.osinfra.cn/toolkits/mindocr/crnn/crnn_vgg7-6faf1b2d-910v2.ckpt) |
</div>


### 推理端

推理端的性能测试主要是基于Mindspore Lite,详细的操作介绍可参考 [Mindspore Lite推理](#6-mindspore-lite-推理)

在采用图模式的ascend 310P上实验结果,mindspore lite版本为2.3.1

<div align="center">

| 设备 | 编译环境 | 模型 | 骨干网络 | 参数量 | 测试集 | 批量大小 | 图模式单卡推理 (FPS) |
| :----: | :----: | :----: | :----: | :----: | :----: | :----: | :----: |
| Ascend310P | Lite2.0 | CRNN | ResNet34_vd | 24.48 M | IC15 | 1 | 361.09 |
| Ascend310P | Lite2.0 | CRNN | ResNet34_vd | 24.48 M | SVT | 1 | 274.67 |
| model name | backbone | batch size | params | test dataset | img/s |
|:----------:|:----------:|:-----------:|:-------:|:------------:|:------:|
| CRNN | ResNet34_vd | 1 | 24.48 M | IC15 | 361.09 |
| CRNN | ResNet34_vd | 1 | 24.48 M | SVT | 274.67 |

</div>

Expand Down Expand Up @@ -399,9 +401,9 @@ mpirun --allow-run-as-root -n 4 python tools/train.py --config configs/rec/crnn/

<div align="center">

| **模型** | **语种** | **环境配置** | **骨干网络** | **街景类** | **网页类** | **文档类** | **训练时间** | **FPS** | **配置文件** | **模型权重下载** |
| :-----: | :-----: | :-------: |:--------: | :--------: | :--------: | :--------: | :---------: |:--------: | :---------: | :-----------: |
| CRNN | 中文 | D910x4-MS1.10-G | ResNet34_vd | 60.45% | 65.95% | 97.68% | 647 s/epoch | 1180 | [crnn_resnet34_ch.yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_resnet34_ch.yaml) |[ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34_ch-7a342e3c.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34_ch-7a342e3c-105bccb2.mindir) |
| **model name** | **backbone** | **cards** | **batch size** | **language** | **jit level** | **graph compile** | **ms/step** | **img/s** | **scene** | **web** | **document** | **recipe** | **download** |
|:--------------:|:------------:|:--------------:|:-----------------:|:------------:|:---------:|:-----------------:|:---------:|:-------:|:------------:|:-----------:|:---------:|:------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| CRNN | ResNet34_vd | 4| 256| Chinese | O2 | 203.48 s | 38.01 | 1180 | 60.45% | 65.95% | 97.68% | [crnn_resnet34_ch.yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_resnet34_ch.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34_ch-7a342e3c.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34_ch-7a342e3c-105bccb2.mindir) |
</div>

**注释:**
Expand Down
Loading

0 comments on commit 3d2c29c

Please sign in to comment.