Skip to content

Commit

Permalink
update readme
Browse files Browse the repository at this point in the history
  • Loading branch information
kk928290341 committed Nov 9, 2024
1 parent dcfcbe5 commit b5c1db4
Show file tree
Hide file tree
Showing 4 changed files with 37 additions and 34 deletions.
22 changes: 11 additions & 11 deletions configs/rec/crnn/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -47,10 +47,10 @@ According to our experiments, the training (following the steps in [Model Traini

<div align="center">

| **model name** | **backbone** | **cards** | **batch size** | **train dataset** | **model params** | **jit level** | **graph compile** | **ms/step** | **img/s** | **avg eval accuracy** | **recipe** | **weight** |
|:--------------:|:---------:|:--------------:| :-----: |:-----------------:|:----------------:|:---------------------:|:-------:|:-----------:|:---------:|:---------------------:|:-------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| CRNN | VGG7 | 8 | 16 | MJ+ST | 8.72 M | O2| 67.18 s | 22.06 | 5802.71 | 82.03% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_vgg7.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_vgg7-ea7e996c.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_vgg7-ea7e996c-573dbd61.mindir) |
| CRNN | ResNet34_vd | 8 | 64 | MJ+ST | 24.48 M | O2| 201.54 s | 76.48 | 6694.84 | 84.45% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_resnet34.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34-83f37f07.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34-83f37f07-eb10a0c9.mindir) |
| **model name** | **backbone** | **train dataset** | **params(M)** | **cards** | **batch size** | **jit level** | **graph compile** | **ms/step** | **img/s** | **accuracy** | **recipe** | **weight** |
|:--------------:|:---------:|:--------------:|:-------------:|:-----------------:|:----------------:|:---------------------:|:-------:|:-----------:|:---------:|:---------------------:|:-------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| CRNN | VGG7 | MJ+ST | 8.72 | 8 | 16 | O2| 67.18 s | 22.06 | 5802.71 | 82.03% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_vgg7.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_vgg7-ea7e996c.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_vgg7-ea7e996c-573dbd61.mindir) |
| CRNN | ResNet34_vd | MJ+ST | 24.48 | 8 | 64 | O2| 201.54 s | 76.48 | 6694.84 | 84.45% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_resnet34.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34-83f37f07.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34-83f37f07-eb10a0c9.mindir) |
</div>

- Detailed accuracy results for each benchmark dataset (IC03, IC13, IC15, IIIT, SVT, SVTP, CUTE):
Expand All @@ -66,9 +66,9 @@ According to our experiments, the training (following the steps in [Model Traini
#### Experiments are tested on ascend 910* with mindspore 2.3.1 graph mode
<div align="center">

| **model name** | **backbone** | **cards** | **batch size** | **train dataset** | **model params** | **jit level** | **graph compile** | **ms/step** | **img/s** | **avg eval accuracy** |**recipe** | **weight** |
|:--------------:|:---------:|:--------------:|:------------:|:-----------------:|:----------------:|:---------------------:|:----------------------------:|:-----------:|:---------:|:---------------------:|:------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------:|
| CRNN | VGG7 | 8 | 16 | MJ+ST | 8.72 M | O2 | 94.36 s | 14.76 | 8672.09 | 81.31% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_vgg7.yaml) | [ckpt](https://download-mindspore.osinfra.cn/toolkits/mindocr/crnn/crnn_vgg7-6faf1b2d-910v2.ckpt) |
| **model name** | **backbone** | **train dataset** | **params(M)** | **cards** | **batch size** | **jit level** | **graph compile** | **ms/step** | **img/s** | **accuracy** |**recipe** | **weight** |
|:--------------:|:---------:|:--------------:|:-------------:|:-----------------:|:----------------:|:---------------------:|:----------------------------:|:-----------:|:---------:|:---------------------:|:------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------:|
| CRNN | VGG7 | MJ+ST | 8.72 | 8 | 16 | O2 | 94.36 s | 14.76 | 8672.09 | 81.31% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_vgg7.yaml) | [ckpt](https://download-mindspore.osinfra.cn/toolkits/mindocr/crnn/crnn_vgg7-6faf1b2d-910v2.ckpt) |
</div>


Expand All @@ -81,10 +81,10 @@ Experiments are tested on ascend 310P with mindspore lite 2.3.1 graph mode

<div align="center">

| model name | backbone | batch size | params | test dataset | img/s |
|:----------:|:----------:|:-----------:|:-------:|:------------:|:------:|
| CRNN | ResNet34_vd | 1 | 24.48 M | IC15 | 361.09 |
| CRNN | ResNet34_vd | 1 | 24.48 M | SVT | 274.67 |
| model name | backbone | test dataset | params(M) | cards | batch size | **jit level** | **graph compile** | img/s |
|:----------:|:----------:|:-----:|:---------:|:-------:|:------------:|:------:|:-----------------:|:------:|
| CRNN | ResNet34_vd | IC15 | 24.48 | 1 | 1 | O2 | 10.46 s | 361.09 |
| CRNN | ResNet34_vd | SVT | 24.48 | 1 | 1 | O2 | 10.31 s | 274.67 |

</div>

Expand Down
22 changes: 11 additions & 11 deletions configs/rec/crnn/README_CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -48,10 +48,10 @@ Table Format:

<div align="center">

| **model name** | **backbone** | **cards** | **batch size** | **train dataset** | **model params** | **jit level** | **graph compile** | **ms/step** | **img/s** | **avg eval accuracy** | **recipe** |**weight** |
|:--------------:|:---------:|:--------------:| :-----: |:-----------------:|:----------------:|:---------------------:|:-------:|:-----------:|:---------:|:---------------------:|:-------------------------:|:----------------------------------------------------:|
| CRNN | VGG7 | 8 | 16 | MJ+ST | 8.72 M | O2| 67.18 s | 22.06 | 5802.71 | 82.03% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_vgg7.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_vgg7-ea7e996c.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_vgg7-ea7e996c-573dbd61.mindir) |
| CRNN | ResNet34_vd | 8 | 64 | MJ+ST | 24.48 M | O2| 201.54 s | 76.48 | 6694.84 | 84.45% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_resnet34.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34-83f37f07.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34-83f37f07-eb10a0c9.mindir) |
| **model name** | **backbone** | **train dataset** | **params(M)** | **cards** | **batch size** | **jit level** | **graph compile** | **ms/step** | **img/s** | **accuracy** | **recipe** | **weight** |
|:--------------:|:---------:|:--------------:|:-------------:|:-----------------:|:----------------:|:---------------------:|:-------:|:-----------:|:---------:|:---------------------:|:-------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| CRNN | VGG7 | MJ+ST | 8.72 | 8 | 16 | O2| 67.18 s | 22.06 | 5802.71 | 82.03% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_vgg7.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_vgg7-ea7e996c.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_vgg7-ea7e996c-573dbd61.mindir) |
| CRNN | ResNet34_vd | MJ+ST | 24.48 | 8 | 64 | O2| 201.54 s | 76.48 | 6694.84 | 84.45% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_resnet34.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34-83f37f07.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/crnn/crnn_resnet34-83f37f07-eb10a0c9.mindir) |
</div>

- 在各个基准数据集(IC03,IC13,IC15,IIIT,SVT,SVTP,CUTE)上的准确率:
Expand All @@ -70,9 +70,9 @@ Table Format:

<div align="center">

| **model name** | **backbone** | **cards** | **batch size** | **train dataset** | **model params** | **jit level** | **graph compile** | **ms/step** | **img/s** | **avg eval accuracy** |**recipe** | **weight** |
|:--------------:|:---------:|:--------------:|:------------:|:-----------------:|:----------------:|:---------------------:|:----------------------------:|:-----------:|:---------:|:---------------------:|:------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------:|
| CRNN | VGG7 | 8 | 16 | MJ+ST | 8.72 M | O2 | 94.36 s | 14.76 | 8672.09 | 81.31% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_vgg7.yaml) | [ckpt](https://download-mindspore.osinfra.cn/toolkits/mindocr/crnn/crnn_vgg7-6faf1b2d-910v2.ckpt) |
| **model name** | **backbone** | **train dataset** | **params(M)** | **cards** | **batch size** | **jit level** | **graph compile** | **ms/step** | **img/s** | **accuracy** |**recipe** | **weight** |
|:--------------:|:---------:|:--------------:|:-------------:|:-----------------:|:----------------:|:---------------------:|:----------------------------:|:-----------:|:---------:|:---------------------:|:------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------:|
| CRNN | VGG7 | MJ+ST | 8.72 | 8 | 16 | O2 | 94.36 s | 14.76 | 8672.09 | 81.31% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/crnn/crnn_vgg7.yaml) | [ckpt](https://download-mindspore.osinfra.cn/toolkits/mindocr/crnn/crnn_vgg7-6faf1b2d-910v2.ckpt) |
</div>


Expand All @@ -84,10 +84,10 @@ Table Format:

<div align="center">

| model name | backbone | batch size | params | test dataset | img/s |
|:----------:|:----------:|:-----------:|:-------:|:------------:|:------:|
| CRNN | ResNet34_vd | 1 | 24.48 M | IC15 | 361.09 |
| CRNN | ResNet34_vd | 1 | 24.48 M | SVT | 274.67 |
| model name | backbone | test dataset | params(M) | cards | batch size | **jit level** | **graph compile** | img/s |
|:----------:|:----------:|:-----:|:---------:|:-------:|:------------:|:------:|:-----------------:|:------:|
| CRNN | ResNet34_vd | IC15 | 24.48 | 1 | 1 | O2 | 10.46 s | 361.09 |
| CRNN | ResNet34_vd | SVT | 24.48 | 1 | 1 | O2 | 10.31 s | 274.67 |

</div>

Expand Down
15 changes: 9 additions & 6 deletions configs/rec/svtr/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,9 +33,12 @@ Table Format:

### Requirements

<div align="center">

| mindspore | ascend driver | firmware | cann toolkit/kernel
|:----------|:--- | :-- |:--
| 2.3.1 | 24.1.RC2 | 7.3.0.1.231 | 8.0.RC2.beta1
</div>

### Accuracy

Expand All @@ -45,10 +48,10 @@ According to our experiments, the evaluation results on public benchmark dataset

<div align="center">

| **model name** | **cards** | **batch size** |**jit level** | **graph compile** | **ms/step** | **img/s** | **avg accuracy** | **recipe** | **weight** |
| **model name** | **cards** | **batch size** |**jit level** | **graph compile** | **ms/step** | **img/s** | **accuracy** | **recipe** | **weight** |
|:--------------:|:---------:|:--------------:|:----------------:|:-----------------:|:-----------------:|:-------------:|:---------:|:---------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| SVTR-Tiny | 4 | 512 |O2| 226.86 s | 49.38 ms/step | 4560 | 90.23% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/svtr/svtr_tiny.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/svtr/svtr_tiny-950be1c3.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/svtr/svtr_tiny-950be1c3-86ece8c8.mindir) |
| SVTR-Tiny-8P | 8 | 512 |O2| 230.74 s | 55.16 ms/step | 9840 | 90.32% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/svtr/svtr_tiny_8p.yaml) | [ckpt](https://download-mindspore.osinfra.cn/toolkits/mindocr/svtr/svtr_tiny_8p-0afc75d6.ckpt) \| [mindir](https://download-mindspore.osinfra.cn/toolkits/mindocr/svtr/svtr_tiny_8p-0afc75d6-255191ef.mindir) |
| SVTR-Tiny | 4 | 512 |O2| 226.86 s | 49.38 | 4560 | 90.23% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/svtr/svtr_tiny.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/svtr/svtr_tiny-950be1c3.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/svtr/svtr_tiny-950be1c3-86ece8c8.mindir) |
| SVTR-Tiny-8P | 8 | 512 |O2| 230.74 s | 55.16 | 9840 | 90.32% | [yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/svtr/svtr_tiny_8p.yaml) | [ckpt](https://download-mindspore.osinfra.cn/toolkits/mindocr/svtr/svtr_tiny_8p-0afc75d6.ckpt) \| [mindir](https://download-mindspore.osinfra.cn/toolkits/mindocr/svtr/svtr_tiny_8p-0afc75d6-255191ef.mindir) |
</div>

Detailed accuracy results for each benchmark dataset
Expand Down Expand Up @@ -377,9 +380,9 @@ After training, evaluation results on the benchmark test set are as follows, whe

<div align="center">

| **model name** | **cards** | **batch size** | **language** | **jit level** | **graph compile** | **ms/step** | **img/s** | **scene** | **web** | **document** | **recipe** | **weight** |
|:--------------:|:---------:|:--------------:| :--------: |:-------------:|:-----------------:|:---------:|:-------:|:------------:|:-----------:|:---------:|:----------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| SVTR-Tiny | 4 | 256 | Chinese | O2 | 235.1 s| 37.75 | 1580 | 65.93% | 69.64% | 98.01% | [svtr_tiny_ch.yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/svtr/svtr_tiny_ch.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/svtr/svtr_tiny_ch-2ee6ade4.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/svtr/svtr_tiny_ch-2ee6ade4-3e495768.mindir) |
| **model name** | **cards** | **batch size** | **languages** | **jit level** | **graph compile** | **ms/step** | **img/s** | **scene** | **web** | **document** | **recipe** | **weight** |
|:--------------:|:---------:|:--------------:|:-------------:|:-------------:|:-----------------:|:---------:|:-------:|:------------:|:-----------:|:---------:|:----------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
| SVTR-Tiny | 4 | 256 | Chinese | O2 | 235.1 s| 37.75 | 1580 | 65.93% | 69.64% | 98.01% | [svtr_tiny_ch.yaml](https://github.com/mindspore-lab/mindocr/blob/main/configs/rec/svtr/svtr_tiny_ch.yaml) | [ckpt](https://download.mindspore.cn/toolkits/mindocr/svtr/svtr_tiny_ch-2ee6ade4.ckpt) \| [mindir](https://download.mindspore.cn/toolkits/mindocr/svtr/svtr_tiny_ch-2ee6ade4-3e495768.mindir) |
</div>

### Training with Custom Datasets
Expand Down
Loading

0 comments on commit b5c1db4

Please sign in to comment.