Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Scheduled monthly dependency update for February #406

Closed
wants to merge 13 commits into from

Conversation

pyup-bot
Copy link
Collaborator

@pyup-bot pyup-bot commented Feb 1, 2024

Update pomegranate from 0.14.9 to 1.0.3.

The bot wasn't able to find a changelog for this release. Got an idea?

Links

Update cython from 0.29.34 to 3.0.8.

Changelog

0.29.37.1

Binary-only release for Py3.12.
Links

Update numpy from 1.24.3 to 1.26.3.

Changelog

1.26.3

discovered after the 1.26.2 release. The most notable changes are the
f2py bug fixes. The Python versions supported by this release are
3.9-3.12.

Compatibility

`f2py` will no longer accept ambiguous `-m` and `.pyf` CLI combinations.
When more than one `.pyf` file is passed, an error is raised. When both
`-m` and a `.pyf` is passed, a warning is emitted and the `-m` provided
name is ignored.

Improvements

`f2py` now handles `common` blocks which have `kind` specifications from
modules. This further expands the usability of intrinsics like
`iso_fortran_env` and `iso_c_binding`.

Contributors

A total of 18 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

-   \DWesl
-   \Illviljan
-   Alexander Grund
-   Andrea Bianchi +
-   Charles Harris
-   Daniel Vanzo
-   Johann Rohwer +
-   Matti Picus
-   Nathan Goldbaum
-   Peter Hawkins
-   Raghuveer Devulapalli
-   Ralf Gommers
-   Rohit Goswami
-   Sayed Adel
-   Sebastian Berg
-   Stefano Rivera +
-   Thomas A Caswell
-   matoro

Pull requests merged

A total of 42 pull requests were merged for this release.

-   [25130](https://github.com/numpy/numpy/pull/25130): MAINT: prepare 1.26.x for further development
-   [25188](https://github.com/numpy/numpy/pull/25188): TYP: add None to `__getitem__` in `numpy.array_api`
-   [25189](https://github.com/numpy/numpy/pull/25189): BLD,BUG: quadmath required where available \[f2py\]
-   [25190](https://github.com/numpy/numpy/pull/25190): BUG: alpha doesn\'t use REAL(10)
-   [25191](https://github.com/numpy/numpy/pull/25191): BUG: Fix FP overflow error in division when the divisor is scalar
-   [25192](https://github.com/numpy/numpy/pull/25192): MAINT: Pin scipy-openblas version.
-   [25201](https://github.com/numpy/numpy/pull/25201): BUG: Fix f2py to enable use of string optional inout argument
-   [25202](https://github.com/numpy/numpy/pull/25202): BUG: Fix -fsanitize=alignment issue in numpy/\_core/src/multiarray/arraytypes.c.src
-   [25203](https://github.com/numpy/numpy/pull/25203): TST: Explicitly pass NumPy path to cython during tests (also\...
-   [25204](https://github.com/numpy/numpy/pull/25204): BUG: fix issues with `newaxis` and `linalg.solve` in `numpy.array_api`
-   [25205](https://github.com/numpy/numpy/pull/25205): BUG: Disallow shadowed modulenames
-   [25217](https://github.com/numpy/numpy/pull/25217): BUG: Handle common blocks with kind specifications from modules
-   [25218](https://github.com/numpy/numpy/pull/25218): BUG: Fix moving compiled executable to root with f2py -c on Windows
-   [25219](https://github.com/numpy/numpy/pull/25219): BUG: Fix single to half-precision conversion on PPC64/VSX3
-   [25227](https://github.com/numpy/numpy/pull/25227): TST: f2py: fix issue in test skip condition
-   [25240](https://github.com/numpy/numpy/pull/25240): Revert \"MAINT: Pin scipy-openblas version.\"
-   [25249](https://github.com/numpy/numpy/pull/25249): MAINT: do not use `long` type
-   [25377](https://github.com/numpy/numpy/pull/25377): TST: PyPy needs another gc.collect on latest versions
-   [25378](https://github.com/numpy/numpy/pull/25378): CI: Install Lapack runtime on Cygwin.
-   [25379](https://github.com/numpy/numpy/pull/25379): MAINT: Bump conda-incubator/setup-miniconda from 2.2.0 to 3.0.1
-   [25380](https://github.com/numpy/numpy/pull/25380): BLD: update vendored Meson for AIX shared library fix
-   [25419](https://github.com/numpy/numpy/pull/25419): MAINT: Init `base` in cpu_avx512_kn
-   [25420](https://github.com/numpy/numpy/pull/25420): BUG: Fix failing test_features on SapphireRapids
-   [25422](https://github.com/numpy/numpy/pull/25422): BUG: Fix non-contiguous memory load when ARM/Neon is enabled
-   [25428](https://github.com/numpy/numpy/pull/25428): MAINT,BUG: Never import distutils above 3.12 \[f2py\]
-   [25452](https://github.com/numpy/numpy/pull/25452): MAINT: make the import-time check for old Accelerate more specific
-   [25458](https://github.com/numpy/numpy/pull/25458): BUG: fix macOS version checks for Accelerate support
-   [25465](https://github.com/numpy/numpy/pull/25465): MAINT: Bump actions/setup-node and larsoner/circleci-artifacts-redirector-action
-   [25466](https://github.com/numpy/numpy/pull/25466): BUG: avoid seg fault from OOB access in RandomState.set_state()
-   [25467](https://github.com/numpy/numpy/pull/25467): BUG: Fix two errors related to not checking for failed allocations
-   [25468](https://github.com/numpy/numpy/pull/25468): BUG: Fix regression with `f2py` wrappers when modules and subroutines\...
-   [25475](https://github.com/numpy/numpy/pull/25475): BUG: Fix build issues on SPR
-   [25478](https://github.com/numpy/numpy/pull/25478): BLD: fix uninitialized variable warnings from simd/neon/memory.h
-   [25480](https://github.com/numpy/numpy/pull/25480): BUG: Handle `iso_c_type` mappings more consistently
-   [25481](https://github.com/numpy/numpy/pull/25481): BUG: Fix module name bug in signature files \[urgent\] \[f2py\]
-   [25482](https://github.com/numpy/numpy/pull/25482): BUG: Handle .pyf.src and fix SciPy \[urgent\]
-   [25483](https://github.com/numpy/numpy/pull/25483): DOC: `f2py` rewrite with `meson` details
-   [25485](https://github.com/numpy/numpy/pull/25485): BUG: Add external library handling for meson \[f2py\]
-   [25486](https://github.com/numpy/numpy/pull/25486): MAINT: Run f2py\'s meson backend with the same python that ran\...
-   [25489](https://github.com/numpy/numpy/pull/25489): MAINT: Update `numpy/f2py/_backends` from main.
-   [25490](https://github.com/numpy/numpy/pull/25490): MAINT: Easy updates of `f2py/*.py` from main.
-   [25491](https://github.com/numpy/numpy/pull/25491): MAINT: Update crackfortran.py and f2py2e.py from main

Checksums

MD5

 7660db27715df261948e7f0f13634f16  numpy-1.26.3-cp310-cp310-macosx_10_9_x86_64.whl
 98d5b98c822de4bed0cf1b0b8f367192  numpy-1.26.3-cp310-cp310-macosx_11_0_arm64.whl
 b71cd0710cec5460292a97a02fa349cd  numpy-1.26.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 0f98a05c92598f849b1be2595f4a52a8  numpy-1.26.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 b866c6aea8070c0753b776d2b521e875  numpy-1.26.3-cp310-cp310-musllinux_1_1_aarch64.whl
 cfdde5868e469fb27655ea73b0b9593b  numpy-1.26.3-cp310-cp310-musllinux_1_1_x86_64.whl
 2655440d61671b5e32b049d30397c58f  numpy-1.26.3-cp310-cp310-win32.whl
 7718a5d33344784ca7821f3bdd467550  numpy-1.26.3-cp310-cp310-win_amd64.whl
 28e4b2ed9192c392f792d88b3c246d1c  numpy-1.26.3-cp311-cp311-macosx_10_9_x86_64.whl
 fb1ae72749463e2c82f0127699728364  numpy-1.26.3-cp311-cp311-macosx_11_0_arm64.whl
 304dec822b508a1d495917610e7562bf  numpy-1.26.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 2cc0d8b073dfd55946a60ba8ed4369f6  numpy-1.26.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 c99962375c599501820899c8ccab6960  numpy-1.26.3-cp311-cp311-musllinux_1_1_aarch64.whl
 47ed42d067ce4863bbf1f40da61ba7d1  numpy-1.26.3-cp311-cp311-musllinux_1_1_x86_64.whl
 3ab3757255feb54ca3793fb9db226586  numpy-1.26.3-cp311-cp311-win32.whl
 c33f2a4518bae535645357a08a93be1a  numpy-1.26.3-cp311-cp311-win_amd64.whl
 bea43600aaff3a4d9978611ccfa44198  numpy-1.26.3-cp312-cp312-macosx_10_9_x86_64.whl
 c678d909ebe737fdabf215d8622ce2a3  numpy-1.26.3-cp312-cp312-macosx_11_0_arm64.whl
 9f21f1875c92425cec1060564b3abb1c  numpy-1.26.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 c44a1998965d45ec136078ee09d880f2  numpy-1.26.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 9274f5c51fa4f3c8fac5efa3d78acd63  numpy-1.26.3-cp312-cp312-musllinux_1_1_aarch64.whl
 07c9f8f86f45077febc46c87ebc0b644  numpy-1.26.3-cp312-cp312-musllinux_1_1_x86_64.whl
 a4857b2f7b6a23bca41178bd344bb28a  numpy-1.26.3-cp312-cp312-win32.whl
 495d9534961d7b10f16fec4515a3d72b  numpy-1.26.3-cp312-cp312-win_amd64.whl
 6494f2d94fd1f184923a33e634692b5e  numpy-1.26.3-cp39-cp39-macosx_10_9_x86_64.whl
 515a7314a0ff6aaba8d53a7a1aaa73ab  numpy-1.26.3-cp39-cp39-macosx_11_0_arm64.whl
 c856adc6a6a78773c43e9c738d662ed5  numpy-1.26.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 09848456158a01feff28f88c6106aef1  numpy-1.26.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 adec00ea2bc98580a436f82e188c0e2f  numpy-1.26.3-cp39-cp39-musllinux_1_1_aarch64.whl
 718bd35dd0431a6434bb30bf8d91d77d  numpy-1.26.3-cp39-cp39-musllinux_1_1_x86_64.whl
 e813aa59cb807efb4a8fee52a6dd41ba  numpy-1.26.3-cp39-cp39-win32.whl
 08e1b0973d0ae5976b38563eaec1253f  numpy-1.26.3-cp39-cp39-win_amd64.whl
 e8887a14750161709636e9fb87df4f36  numpy-1.26.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
 0bdb19040525451553fb5758b65caf4c  numpy-1.26.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 b931c14d06cc37d85d63ed1ddd88e875  numpy-1.26.3-pp39-pypy39_pp73-win_amd64.whl
 1c915dc6c36dd4c674d9379e9470ff8b  numpy-1.26.3.tar.gz

SHA256

 806dd64230dbbfaca8a27faa64e2f414bf1c6622ab78cc4264f7f5f028fee3bf  numpy-1.26.3-cp310-cp310-macosx_10_9_x86_64.whl
 02f98011ba4ab17f46f80f7f8f1c291ee7d855fcef0a5a98db80767a468c85cd  numpy-1.26.3-cp310-cp310-macosx_11_0_arm64.whl
 6d45b3ec2faed4baca41c76617fcdcfa4f684ff7a151ce6fc78ad3b6e85af0a6  numpy-1.26.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 bdd2b45bf079d9ad90377048e2747a0c82351989a2165821f0c96831b4a2a54b  numpy-1.26.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 211ddd1e94817ed2d175b60b6374120244a4dd2287f4ece45d49228b4d529178  numpy-1.26.3-cp310-cp310-musllinux_1_1_aarch64.whl
 b1240f767f69d7c4c8a29adde2310b871153df9b26b5cb2b54a561ac85146485  numpy-1.26.3-cp310-cp310-musllinux_1_1_x86_64.whl
 21a9484e75ad018974a2fdaa216524d64ed4212e418e0a551a2d83403b0531d3  numpy-1.26.3-cp310-cp310-win32.whl
 9e1591f6ae98bcfac2a4bbf9221c0b92ab49762228f38287f6eeb5f3f55905ce  numpy-1.26.3-cp310-cp310-win_amd64.whl
 b831295e5472954104ecb46cd98c08b98b49c69fdb7040483aff799a755a7374  numpy-1.26.3-cp311-cp311-macosx_10_9_x86_64.whl
 9e87562b91f68dd8b1c39149d0323b42e0082db7ddb8e934ab4c292094d575d6  numpy-1.26.3-cp311-cp311-macosx_11_0_arm64.whl
 8c66d6fec467e8c0f975818c1796d25c53521124b7cfb760114be0abad53a0a2  numpy-1.26.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 f25e2811a9c932e43943a2615e65fc487a0b6b49218899e62e426e7f0a57eeda  numpy-1.26.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 af36e0aa45e25c9f57bf684b1175e59ea05d9a7d3e8e87b7ae1a1da246f2767e  numpy-1.26.3-cp311-cp311-musllinux_1_1_aarch64.whl
 51c7f1b344f302067b02e0f5b5d2daa9ed4a721cf49f070280ac202738ea7f00  numpy-1.26.3-cp311-cp311-musllinux_1_1_x86_64.whl
 7ca4f24341df071877849eb2034948459ce3a07915c2734f1abb4018d9c49d7b  numpy-1.26.3-cp311-cp311-win32.whl
 39763aee6dfdd4878032361b30b2b12593fb445ddb66bbac802e2113eb8a6ac4  numpy-1.26.3-cp311-cp311-win_amd64.whl
 a7081fd19a6d573e1a05e600c82a1c421011db7935ed0d5c483e9dd96b99cf13  numpy-1.26.3-cp312-cp312-macosx_10_9_x86_64.whl
 12c70ac274b32bc00c7f61b515126c9205323703abb99cd41836e8125ea0043e  numpy-1.26.3-cp312-cp312-macosx_11_0_arm64.whl
 7f784e13e598e9594750b2ef6729bcd5a47f6cfe4a12cca13def35e06d8163e3  numpy-1.26.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 5f24750ef94d56ce6e33e4019a8a4d68cfdb1ef661a52cdaee628a56d2437419  numpy-1.26.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 77810ef29e0fb1d289d225cabb9ee6cf4d11978a00bb99f7f8ec2132a84e0166  numpy-1.26.3-cp312-cp312-musllinux_1_1_aarch64.whl
 8ed07a90f5450d99dad60d3799f9c03c6566709bd53b497eb9ccad9a55867f36  numpy-1.26.3-cp312-cp312-musllinux_1_1_x86_64.whl
 f73497e8c38295aaa4741bdfa4fda1a5aedda5473074369eca10626835445511  numpy-1.26.3-cp312-cp312-win32.whl
 da4b0c6c699a0ad73c810736303f7fbae483bcb012e38d7eb06a5e3b432c981b  numpy-1.26.3-cp312-cp312-win_amd64.whl
 1666f634cb3c80ccbd77ec97bc17337718f56d6658acf5d3b906ca03e90ce87f  numpy-1.26.3-cp39-cp39-macosx_10_9_x86_64.whl
 18c3319a7d39b2c6a9e3bb75aab2304ab79a811ac0168a671a62e6346c29b03f  numpy-1.26.3-cp39-cp39-macosx_11_0_arm64.whl
 0b7e807d6888da0db6e7e75838444d62495e2b588b99e90dd80c3459594e857b  numpy-1.26.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 b4d362e17bcb0011738c2d83e0a65ea8ce627057b2fdda37678f4374a382a137  numpy-1.26.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 b8c275f0ae90069496068c714387b4a0eba5d531aace269559ff2b43655edd58  numpy-1.26.3-cp39-cp39-musllinux_1_1_aarch64.whl
 cc0743f0302b94f397a4a65a660d4cd24267439eb16493fb3caad2e4389bccbb  numpy-1.26.3-cp39-cp39-musllinux_1_1_x86_64.whl
 9bc6d1a7f8cedd519c4b7b1156d98e051b726bf160715b769106661d567b3f03  numpy-1.26.3-cp39-cp39-win32.whl
 867e3644e208c8922a3be26fc6bbf112a035f50f0a86497f98f228c50c607bb2  numpy-1.26.3-cp39-cp39-win_amd64.whl
 3c67423b3703f8fbd90f5adaa37f85b5794d3366948efe9a5190a5f3a83fc34e  numpy-1.26.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
 46f47ee566d98849323f01b349d58f2557f02167ee301e5e28809a8c0e27a2d0  numpy-1.26.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 a8474703bffc65ca15853d5fd4d06b18138ae90c17c8d12169968e998e448bb5  numpy-1.26.3-pp39-pypy39_pp73-win_amd64.whl
 697df43e2b6310ecc9d95f05d5ef20eacc09c7c4ecc9da3f235d39e71b7da1e4  numpy-1.26.3.tar.gz

1.26.2

discovered after the 1.26.1 release. The 1.26.release series is the last
planned minor release series before NumPy 2.0. The Python versions
supported by this release are 3.9-3.12.

Contributors

A total of 13 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

-   \stefan6419846
-   \thalassemia +
-   Andrew Nelson
-   Charles Bousseau +
-   Charles Harris
-   Marcel Bargull +
-   Mark Mentovai +
-   Matti Picus
-   Nathan Goldbaum
-   Ralf Gommers
-   Sayed Adel
-   Sebastian Berg
-   William Ayd +

Pull requests merged

A total of 25 pull requests were merged for this release.

-   [24814](https://github.com/numpy/numpy/pull/24814): MAINT: align test_dispatcher s390x targets with \_umath_tests_mtargets
-   [24929](https://github.com/numpy/numpy/pull/24929): MAINT: prepare 1.26.x for further development
-   [24955](https://github.com/numpy/numpy/pull/24955): ENH: Add Cython enumeration for NPY_FR_GENERIC
-   [24962](https://github.com/numpy/numpy/pull/24962): REL: Remove Python upper version from the release branch
-   [24971](https://github.com/numpy/numpy/pull/24971): BLD: Use the correct Python interpreter when running tempita.py
-   [24972](https://github.com/numpy/numpy/pull/24972): MAINT: Remove unhelpful error replacements from `import_array()`
-   [24977](https://github.com/numpy/numpy/pull/24977): BLD: use classic linker on macOS, the new one in XCode 15 has\...
-   [25003](https://github.com/numpy/numpy/pull/25003): BLD: musllinux_aarch64 \[wheel build\]
-   [25043](https://github.com/numpy/numpy/pull/25043): MAINT: Update mailmap
-   [25049](https://github.com/numpy/numpy/pull/25049): MAINT: Update meson build infrastructure.
-   [25071](https://github.com/numpy/numpy/pull/25071): MAINT: Split up .github/workflows to match main
-   [25083](https://github.com/numpy/numpy/pull/25083): BUG: Backport fix build on ppc64 when the baseline set to Power9\...
-   [25093](https://github.com/numpy/numpy/pull/25093): BLD: Fix features.h detection for Meson builds \[1.26.x Backport\]
-   [25095](https://github.com/numpy/numpy/pull/25095): BUG: Avoid intp conversion regression in Cython 3 (backport)
-   [25107](https://github.com/numpy/numpy/pull/25107): CI: remove obsolete jobs, and move macOS and conda Azure jobs\...
-   [25108](https://github.com/numpy/numpy/pull/25108): CI: Add linux_qemu action and remove travis testing.
-   [25112](https://github.com/numpy/numpy/pull/25112): MAINT: Update .spin/cmds.py from main.
-   [25113](https://github.com/numpy/numpy/pull/25113): DOC: Visually divide main license and bundled licenses in wheels
-   [25115](https://github.com/numpy/numpy/pull/25115): MAINT: Add missing `noexcept` to shuffle helpers
-   [25116](https://github.com/numpy/numpy/pull/25116): DOC: Fix license identifier for OpenBLAS
-   [25117](https://github.com/numpy/numpy/pull/25117): BLD: improve detection of Netlib libblas/libcblas/liblapack
-   [25118](https://github.com/numpy/numpy/pull/25118): MAINT: Make bitfield integers unsigned
-   [25119](https://github.com/numpy/numpy/pull/25119): BUG: Make n a long int for np.random.multinomial
-   [25120](https://github.com/numpy/numpy/pull/25120): BLD: change default of the `allow-noblas` option to true.
-   [25121](https://github.com/numpy/numpy/pull/25121): BUG: ensure passing `np.dtype` to itself doesn\'t crash

Checksums

MD5

 1a5dc6b5b3bf11ad40a59eedb3b69fa1  numpy-1.26.2-cp310-cp310-macosx_10_9_x86_64.whl
 4b741c6dfe4e6e22e34e9c5c788d4f04  numpy-1.26.2-cp310-cp310-macosx_11_0_arm64.whl
 2953687fb26e1dd8a2d1bb7109551fcd  numpy-1.26.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 ea9127a3a03f27fd101c62425c661d8d  numpy-1.26.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 7a6be7c6c1cc3e1ff73f64052fe30677  numpy-1.26.2-cp310-cp310-musllinux_1_1_aarch64.whl
 4f45d3f69f54fd1638609fde34c33a5c  numpy-1.26.2-cp310-cp310-musllinux_1_1_x86_64.whl
 f22f5ea26c86eb126ff502fff75d6c21  numpy-1.26.2-cp310-cp310-win32.whl
 49871452488e1a55d15ab54c6f3e546e  numpy-1.26.2-cp310-cp310-win_amd64.whl
 676740bf60fb1c8f5a6b31e00b9a4e9b  numpy-1.26.2-cp311-cp311-macosx_10_9_x86_64.whl
 7170545dcc2a38a1c2386a6081043b64  numpy-1.26.2-cp311-cp311-macosx_11_0_arm64.whl
 feae1190c73d811e2e7ebcad4baf6edf  numpy-1.26.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 03131896abade61b77e0f6e53abb988a  numpy-1.26.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 f160632f128a3fd46787aa02d8731fbb  numpy-1.26.2-cp311-cp311-musllinux_1_1_aarch64.whl
 014250db593d589b5533ef7127839c46  numpy-1.26.2-cp311-cp311-musllinux_1_1_x86_64.whl
 fb437346dac24d0cb23f5314db043c8b  numpy-1.26.2-cp311-cp311-win32.whl
 7359adc233874898ea768cd4aec28bb3  numpy-1.26.2-cp311-cp311-win_amd64.whl
 207a678bea75227428e7fb84d4dc457a  numpy-1.26.2-cp312-cp312-macosx_10_9_x86_64.whl
 302ff6cc047a408cdf21981bd7b26056  numpy-1.26.2-cp312-cp312-macosx_11_0_arm64.whl
 7526faaea58c76aed395c7128dd6e14d  numpy-1.26.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 28d3b1943d3a8ad4bbb2ae9da0a77cb9  numpy-1.26.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 d91f5b2bb2c931e41ae7c80ec7509a31  numpy-1.26.2-cp312-cp312-musllinux_1_1_aarch64.whl
 b2504d4239419f012c08fa1eab12f940  numpy-1.26.2-cp312-cp312-musllinux_1_1_x86_64.whl
 57944ba30adc07f33e83a9b45f5c625a  numpy-1.26.2-cp312-cp312-win32.whl
 fe38cd95bbee405ce0cf51c8753a2676  numpy-1.26.2-cp312-cp312-win_amd64.whl
 28e1bc3efaf89cf6f0a2b616c0e16401  numpy-1.26.2-cp39-cp39-macosx_10_9_x86_64.whl
 9932ccff54855f12ee24f60528279bf1  numpy-1.26.2-cp39-cp39-macosx_11_0_arm64.whl
 b52c1e987074dad100ad234122a397b9  numpy-1.26.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 1d1bd7e0d2a89ce795a9566a38ed9bb5  numpy-1.26.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 01d2abfe8e9b35415efb791ac6c5865e  numpy-1.26.2-cp39-cp39-musllinux_1_1_aarch64.whl
 5a6d6ac287ebd93a221e59590329e202  numpy-1.26.2-cp39-cp39-musllinux_1_1_x86_64.whl
 4e4e4d8cf661a8d2838ee700fabae87e  numpy-1.26.2-cp39-cp39-win32.whl
 b8e52ecac110471502686abbdf774b78  numpy-1.26.2-cp39-cp39-win_amd64.whl
 aed2d2914be293f60fedda360b64abf8  numpy-1.26.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
 6bd88e0f33933445d0e18c1a850f60e0  numpy-1.26.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 010aeb2a50af0af1f7ef56f76f8cf463  numpy-1.26.2-pp39-pypy39_pp73-win_amd64.whl
 8f6446a32e47953a03f8fe8533e21e98  numpy-1.26.2.tar.gz

SHA256

 3703fc9258a4a122d17043e57b35e5ef1c5a5837c3db8be396c82e04c1cf9b0f  numpy-1.26.2-cp310-cp310-macosx_10_9_x86_64.whl
 cc392fdcbd21d4be6ae1bb4475a03ce3b025cd49a9be5345d76d7585aea69440  numpy-1.26.2-cp310-cp310-macosx_11_0_arm64.whl
 36340109af8da8805d8851ef1d74761b3b88e81a9bd80b290bbfed61bd2b4f75  numpy-1.26.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 bcc008217145b3d77abd3e4d5ef586e3bdfba8fe17940769f8aa09b99e856c00  numpy-1.26.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 3ced40d4e9e18242f70dd02d739e44698df3dcb010d31f495ff00a31ef6014fe  numpy-1.26.2-cp310-cp310-musllinux_1_1_aarch64.whl
 b272d4cecc32c9e19911891446b72e986157e6a1809b7b56518b4f3755267523  numpy-1.26.2-cp310-cp310-musllinux_1_1_x86_64.whl
 22f8fc02fdbc829e7a8c578dd8d2e15a9074b630d4da29cda483337e300e3ee9  numpy-1.26.2-cp310-cp310-win32.whl
 26c9d33f8e8b846d5a65dd068c14e04018d05533b348d9eaeef6c1bd787f9919  numpy-1.26.2-cp310-cp310-win_amd64.whl
 b96e7b9c624ef3ae2ae0e04fa9b460f6b9f17ad8b4bec6d7756510f1f6c0c841  numpy-1.26.2-cp311-cp311-macosx_10_9_x86_64.whl
 aa18428111fb9a591d7a9cc1b48150097ba6a7e8299fb56bdf574df650e7d1f1  numpy-1.26.2-cp311-cp311-macosx_11_0_arm64.whl
 06fa1ed84aa60ea6ef9f91ba57b5ed963c3729534e6e54055fc151fad0423f0a  numpy-1.26.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 96ca5482c3dbdd051bcd1fce8034603d6ebfc125a7bd59f55b40d8f5d246832b  numpy-1.26.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 854ab91a2906ef29dc3925a064fcd365c7b4da743f84b123002f6139bcb3f8a7  numpy-1.26.2-cp311-cp311-musllinux_1_1_aarch64.whl
 f43740ab089277d403aa07567be138fc2a89d4d9892d113b76153e0e412409f8  numpy-1.26.2-cp311-cp311-musllinux_1_1_x86_64.whl
 a2bbc29fcb1771cd7b7425f98b05307776a6baf43035d3b80c4b0f29e9545186  numpy-1.26.2-cp311-cp311-win32.whl
 2b3fca8a5b00184828d12b073af4d0fc5fdd94b1632c2477526f6bd7842d700d  numpy-1.26.2-cp311-cp311-win_amd64.whl
 a4cd6ed4a339c21f1d1b0fdf13426cb3b284555c27ac2f156dfdaaa7e16bfab0  numpy-1.26.2-cp312-cp312-macosx_10_9_x86_64.whl
 5d5244aabd6ed7f312268b9247be47343a654ebea52a60f002dc70c769048e75  numpy-1.26.2-cp312-cp312-macosx_11_0_arm64.whl
 6a3cdb4d9c70e6b8c0814239ead47da00934666f668426fc6e94cce869e13fd7  numpy-1.26.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 aa317b2325f7aa0a9471663e6093c210cb2ae9c0ad824732b307d2c51983d5b6  numpy-1.26.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 174a8880739c16c925799c018f3f55b8130c1f7c8e75ab0a6fa9d41cab092fd6  numpy-1.26.2-cp312-cp312-musllinux_1_1_aarch64.whl
 f79b231bf5c16b1f39c7f4875e1ded36abee1591e98742b05d8a0fb55d8a3eec  numpy-1.26.2-cp312-cp312-musllinux_1_1_x86_64.whl
 4a06263321dfd3598cacb252f51e521a8cb4b6df471bb12a7ee5cbab20ea9167  numpy-1.26.2-cp312-cp312-win32.whl
 b04f5dc6b3efdaab541f7857351aac359e6ae3c126e2edb376929bd3b7f92d7e  numpy-1.26.2-cp312-cp312-win_amd64.whl
 4eb8df4bf8d3d90d091e0146f6c28492b0be84da3e409ebef54349f71ed271ef  numpy-1.26.2-cp39-cp39-macosx_10_9_x86_64.whl
 1a13860fdcd95de7cf58bd6f8bc5a5ef81c0b0625eb2c9a783948847abbef2c2  numpy-1.26.2-cp39-cp39-macosx_11_0_arm64.whl
 64308ebc366a8ed63fd0bf426b6a9468060962f1a4339ab1074c228fa6ade8e3  numpy-1.26.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 baf8aab04a2c0e859da118f0b38617e5ee65d75b83795055fb66c0d5e9e9b818  numpy-1.26.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 d73a3abcac238250091b11caef9ad12413dab01669511779bc9b29261dd50210  numpy-1.26.2-cp39-cp39-musllinux_1_1_aarch64.whl
 b361d369fc7e5e1714cf827b731ca32bff8d411212fccd29ad98ad622449cc36  numpy-1.26.2-cp39-cp39-musllinux_1_1_x86_64.whl
 bd3f0091e845164a20bd5a326860c840fe2af79fa12e0469a12768a3ec578d80  numpy-1.26.2-cp39-cp39-win32.whl
 2beef57fb031dcc0dc8fa4fe297a742027b954949cabb52a2a376c144e5e6060  numpy-1.26.2-cp39-cp39-win_amd64.whl
 1cc3d5029a30fb5f06704ad6b23b35e11309491c999838c31f124fee32107c79  numpy-1.26.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
 94cc3c222bb9fb5a12e334d0479b97bb2df446fbe622b470928f5284ffca3f8d  numpy-1.26.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 fe6b44fb8fcdf7eda4ef4461b97b3f63c466b27ab151bec2366db8b197387841  numpy-1.26.2-pp39-pypy39_pp73-win_amd64.whl
 f65738447676ab5777f11e6bbbdb8ce11b785e105f690bc45966574816b6d3ea  numpy-1.26.2.tar.gz

1.26.1

discovered after the 1.26.0 release. In addition, it adds new
functionality for detecting BLAS and LAPACK when building from source.
Highlights are:

-   Improved detection of BLAS and LAPACK libraries for meson builds
-   Pickle compatibility with the upcoming NumPy 2.0.

The 1.26.release series is the last planned minor release series before
NumPy 2.0. The Python versions supported by this release are 3.9-3.12.

Build system changes

Improved BLAS/LAPACK detection and control

Auto-detection for a number of BLAS and LAPACK is now implemented for
Meson. By default, the build system will try to detect MKL, Accelerate
(on macOS \>=13.3), OpenBLAS, FlexiBLAS, BLIS and reference BLAS/LAPACK.
Support for MKL was significantly improved, and support for FlexiBLAS
was added.

New command-line flags are available to further control the selection of
the BLAS and LAPACK libraries to build against.

To select a specific library, use the config-settings interface via
`pip` or `pypa/build`. E.g., to select `libblas`/`liblapack`, use:

 $ pip install numpy -Csetup-args=-Dblas=blas -Csetup-args=-Dlapack=lapack
 $  OR
 $ python -m build . -Csetup-args=-Dblas=blas -Csetup-args=-Dlapack=lapack

This works not only for the libraries named above, but for any library
that Meson is able to detect with the given name through `pkg-config` or
CMake.

Besides `-Dblas` and `-Dlapack`, a number of other new flags are
available to control BLAS/LAPACK selection and behavior:

-   `-Dblas-order` and `-Dlapack-order`: a list of library names to
 search for in order, overriding the default search order.
-   `-Duse-ilp64`: if set to `true`, use ILP64 (64-bit integer) BLAS and
 LAPACK. Note that with this release, ILP64 support has been extended
 to include MKL and FlexiBLAS. OpenBLAS and Accelerate were supported
 in previous releases.
-   `-Dallow-noblas`: if set to `true`, allow NumPy to build with its
 internal (very slow) fallback routines instead of linking against an
 external BLAS/LAPACK library. *The default for this flag may be
 changed to \`\`true\`\` in a future 1.26.x release, however for
 1.26.1 we\'d prefer to keep it as \`\`false\`\` because if failures
 to detect an installed library are happening, we\'d like a bug
 report for that, so we can quickly assess whether the new
 auto-detection machinery needs further improvements.*
-   `-Dmkl-threading`: to select the threading layer for MKL. There are
 four options: `seq`, `iomp`, `gomp` and `tbb`. The default is
 `auto`, which selects from those four as appropriate given the
 version of MKL selected.
-   `-Dblas-symbol-suffix`: manually select the symbol suffix to use for
 the library - should only be needed for linking against libraries
 built in a non-standard way.

New features

`numpy._core` submodule stubs

`numpy._core` submodule stubs were added to provide compatibility with
pickled arrays created using NumPy 2.0 when running Numpy 1.26.

Contributors

A total of 13 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

-   Andrew Nelson
-   Anton Prosekin +
-   Charles Harris
-   Chongyun Lee +
-   Ivan A. Melnikov +
-   Jake Lishman +
-   Mahder Gebremedhin +
-   Mateusz Sokół
-   Matti Picus
-   Munira Alduraibi +
-   Ralf Gommers
-   Rohit Goswami
-   Sayed Adel

Pull requests merged

A total of 20 pull requests were merged for this release.

-   [24742](https://github.com/numpy/numpy/pull/24742): MAINT: Update cibuildwheel version
-   [24748](https://github.com/numpy/numpy/pull/24748): MAINT: fix version string in wheels built with setup.py
-   [24771](https://github.com/numpy/numpy/pull/24771): BLD, BUG: Fix build failure for host flags e.g. `-march=native`\...
-   [24773](https://github.com/numpy/numpy/pull/24773): DOC: Updated the f2py docs to remove a note on -fimplicit-none
-   [24776](https://github.com/numpy/numpy/pull/24776): BUG: Fix SIMD f32 trunc test on s390x when baseline is none
-   [24785](https://github.com/numpy/numpy/pull/24785): BLD: add libquadmath to licences and other tweaks (#24753)
-   [24786](https://github.com/numpy/numpy/pull/24786): MAINT: Activate `use-compute-credits` for Cirrus.
-   [24803](https://github.com/numpy/numpy/pull/24803): BLD: updated vendored-meson/meson for mips64 fix
-   [24804](https://github.com/numpy/numpy/pull/24804): MAINT: fix licence path win
-   [24813](https://github.com/numpy/numpy/pull/24813): BUG: Fix order of Windows OS detection macros.
-   [24831](https://github.com/numpy/numpy/pull/24831): BUG, SIMD: use scalar cmul on bad Apple clang x86_64 (#24828)
-   [24840](https://github.com/numpy/numpy/pull/24840): BUG: Fix DATA statements for f2py
-   [24870](https://github.com/numpy/numpy/pull/24870): API: Add `NumpyUnpickler` for backporting
-   [24872](https://github.com/numpy/numpy/pull/24872): MAINT: Xfail test failing on PyPy.
-   [24879](https://github.com/numpy/numpy/pull/24879): BLD: fix math func feature checks, fix FreeBSD build, add CI\...
-   [24899](https://github.com/numpy/numpy/pull/24899): ENH: meson: implement BLAS/LAPACK auto-detection and many CI\...
-   [24902](https://github.com/numpy/numpy/pull/24902): DOC: add a 1.26.1 release notes section for BLAS/LAPACK build\...
-   [24906](https://github.com/numpy/numpy/pull/24906): MAINT: Backport `numpy._core` stubs. Remove `NumpyUnpickler`
-   [24911](https://github.com/numpy/numpy/pull/24911): MAINT: Bump pypa/cibuildwheel from 2.16.1 to 2.16.2
-   [24912](https://github.com/numpy/numpy/pull/24912): BUG: loongarch doesn\'t use REAL(10)

Checksums

MD5

 bda38de1a047dd9fdddae16c0d9fb358  numpy-1.26.1-cp310-cp310-macosx_10_9_x86_64.whl
 196d2e39047da64ab28e177760c95461  numpy-1.26.1-cp310-cp310-macosx_11_0_arm64.whl
 9d25010a7bf50e624d2fed742790afbd  numpy-1.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 9b22fa3d030807f0708007d9c0659f65  numpy-1.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 eea626b8b930acb4b32302a9e95714f5  numpy-1.26.1-cp310-cp310-musllinux_1_1_x86_64.whl
 3c40ef068f50d2ac2913c5b9fa1233fa  numpy-1.26.1-cp310-cp310-win32.whl
 315c251d2f284af25761a37ce6dd4d10  numpy-1.26.1-cp310-cp310-win_amd64.whl
 ebdd5046937df50e9f54a6d38c5775dd  numpy-1.26.1-cp311-cp311-macosx_10_9_x86_64.whl
 682f9beebe8547f205d6cdc8ff96a984  numpy-1.26.1-cp311-cp311-macosx_11_0_arm64.whl
 e86da9b6040ea88b3835c4d8f8578658  numpy-1.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 ebcb6cf7f64454215e29d8a89829c8e1  numpy-1.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 a8c89e13dc9a63712104e2fb06fb63a6  numpy-1.26.1-cp311-cp311-musllinux_1_1_x86_64.whl
 339795930404988dbc664ff4cc72b399  numpy-1.26.1-cp311-cp311-win32.whl
 4ef5e1bdd7726c19615843f5ac72e618  numpy-1.26.1-cp311-cp311-win_amd64.whl
 3aad6bc72db50e9cc88aa5813e8f35bd  numpy-1.26.1-cp312-cp312-macosx_10_9_x86_64.whl
 fd62f65ae7798dbda9a3f7af7aa5c8db  numpy-1.26.1-cp312-cp312-macosx_11_0_arm64.whl
 104d939e080f1baf0a56aed1de0e79e3  numpy-1.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 c44b56c96097f910bbec1420abcf3db5  numpy-1.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 1dce230368ae5fc47dd0fe8de8ff771d  numpy-1.26.1-cp312-cp312-musllinux_1_1_x86_64.whl
 d93338e7d60e1d294ca326450e99806b  numpy-1.26.1-cp312-cp312-win32.whl
 a1832f46521335c1ee4c56dbf12e600b  numpy-1.26.1-cp312-cp312-win_amd64.whl
 946fbb0b6caca9258985495532d3f9ab  numpy-1.26.1-cp39-cp39-macosx_10_9_x86_64.whl
 78c2ab13d395d67d90bcd6583a6f61a8  numpy-1.26.1-cp39-cp39-macosx_11_0_arm64.whl
 0a9d80d8b646abf4ffe51fff3e075d10  numpy-1.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 0229ba8145d4f58500873b540a55d60e  numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 9179fc57c03260374c86e18867c24463  numpy-1.26.1-cp39-cp39-musllinux_1_1_x86_64.whl
 246a3103fdbe5d891d7a8aee28875a26  numpy-1.26.1-cp39-cp39-win32.whl
 4589dcb7f754fade6ea3946416bee638  numpy-1.26.1-cp39-cp39-win_amd64.whl
 3af340d5487a6c045f00fe5eb889957c  numpy-1.26.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
 28aece4f1ceb92ec463aa353d4a91c8b  numpy-1.26.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 bbd0461a1e31017b05509e9971b3478e  numpy-1.26.1-pp39-pypy39_pp73-win_amd64.whl
 2d770f4c281d405b690c4bcb3dbe99e2  numpy-1.26.1.tar.gz

SHA256

 82e871307a6331b5f09efda3c22e03c095d957f04bf6bc1804f30048d0e5e7af  numpy-1.26.1-cp310-cp310-macosx_10_9_x86_64.whl
 cdd9ec98f0063d93baeb01aad472a1a0840dee302842a2746a7a8e92968f9575  numpy-1.26.1-cp310-cp310-macosx_11_0_arm64.whl
 d78f269e0c4fd365fc2992c00353e4530d274ba68f15e968d8bc3c69ce5f5244  numpy-1.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 8ab9163ca8aeb7fd32fe93866490654d2f7dda4e61bc6297bf72ce07fdc02f67  numpy-1.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 78ca54b2f9daffa5f323f34cdf21e1d9779a54073f0018a3094ab907938331a2  numpy-1.26.1-cp310-cp310-musllinux_1_1_x86_64.whl
 d1cfc92db6af1fd37a7bb58e55c8383b4aa1ba23d012bdbba26b4bcca45ac297  numpy-1.26.1-cp310-cp310-win32.whl
 d2984cb6caaf05294b8466966627e80bf6c7afd273279077679cb010acb0e5ab  numpy-1.26.1-cp310-cp310-win_amd64.whl
 cd7837b2b734ca72959a1caf3309457a318c934abef7a43a14bb984e574bbb9a  numpy-1.26.1-cp311-cp311-macosx_10_9_x86_64.whl
 1c59c046c31a43310ad0199d6299e59f57a289e22f0f36951ced1c9eac3665b9  numpy-1.26.1-cp311-cp311-macosx_11_0_arm64.whl
 d58e8c51a7cf43090d124d5073bc29ab2755822181fcad978b12e144e5e5a4b3  numpy-1.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 6081aed64714a18c72b168a9276095ef9155dd7888b9e74b5987808f0dd0a974  numpy-1.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 97e5d6a9f0702c2863aaabf19f0d1b6c2628fbe476438ce0b5ce06e83085064c  numpy-1.26.1-cp311-cp311-musllinux_1_1_x86_64.whl
 b9d45d1dbb9de84894cc50efece5b09939752a2d75aab3a8b0cef6f3a35ecd6b  numpy-1.26.1-cp311-cp311-win32.whl
 3649d566e2fc067597125428db15d60eb42a4e0897fc48d28cb75dc2e0454e53  numpy-1.26.1-cp311-cp311-win_amd64.whl
 1d1bd82d539607951cac963388534da3b7ea0e18b149a53cf883d8f699178c0f  numpy-1.26.1-cp312-cp312-macosx_10_9_x86_64.whl
 afd5ced4e5a96dac6725daeb5242a35494243f2239244fad10a90ce58b071d24  numpy-1.26.1-cp312-cp312-macosx_11_0_arm64.whl
 a03fb25610ef560a6201ff06df4f8105292ba56e7cdd196ea350d123fc32e24e  numpy-1.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 dcfaf015b79d1f9f9c9fd0731a907407dc3e45769262d657d754c3a028586124  numpy-1.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 e509cbc488c735b43b5ffea175235cec24bbc57b227ef1acc691725beb230d1c  numpy-1.26.1-cp312-cp312-musllinux_1_1_x86_64.whl
 af22f3d8e228d84d1c0c44c1fbdeb80f97a15a0abe4f080960393a00db733b66  numpy-1.26.1-cp312-cp312-win32.whl
 9f42284ebf91bdf32fafac29d29d4c07e5e9d1af862ea73686581773ef9e73a7  numpy-1.26.1-cp312-cp312-win_amd64.whl
 bb894accfd16b867d8643fc2ba6c8617c78ba2828051e9a69511644ce86ce83e  numpy-1.26.1-cp39-cp39-macosx_10_9_x86_64.whl
 e44ccb93f30c75dfc0c3aa3ce38f33486a75ec9abadabd4e59f114994a9c4617  numpy-1.26.1-cp39-cp39-macosx_11_0_arm64.whl
 9696aa2e35cc41e398a6d42d147cf326f8f9d81befcb399bc1ed7ffea339b64e  numpy-1.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 a5b411040beead47a228bde3b2241100454a6abde9df139ed087bd73fc0a4908  numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 1e11668d6f756ca5ef534b5be8653d16c5352cbb210a5c2a79ff288e937010d5  numpy-1.26.1-cp39-cp39-musllinux_1_1_x86_64.whl
 d1d2c6b7dd618c41e202c59c1413ef9b2c8e8a15f5039e344af64195459e3104  numpy-1.26.1-cp39-cp39-win32.whl
 59227c981d43425ca5e5c01094d59eb14e8772ce6975d4b2fc1e106a833d5ae2  numpy-1.26.1-cp39-cp39-win_amd64.whl
 06934e1a22c54636a059215d6da99e23286424f316fddd979f5071093b648668  numpy-1.26.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
 76ff661a867d9272cd2a99eed002470f46dbe0943a5ffd140f49be84f68ffc42  numpy-1.26.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 6965888d65d2848e8768824ca8288db0a81263c1efccec881cb35a0d805fcd2f  numpy-1.26.1-pp39-pypy39_pp73-win_amd64.whl
 c8c6c72d4a9f831f328efb1312642a1cafafaa88981d9ab76368d50d07d93cbe  numpy-1.26.1.tar.gz

1.26.0

The NumPy 1.26.0 release is a continuation of the 1.25.x release cycle
with the addition of Python 3.12.0 support. Python 3.12 dropped
distutils, consequently supporting it required finding a replacement for
the setup.py/distutils based build system NumPy was using. We have
chosen to use the Meson build system instead, and this is the first
NumPy release supporting it. This is also the first release that
supports Cython 3.0 in addition to retaining 0.29.X compatibility.
Supporting those two upgrades was a large project, over 100 files have
been touched in this release. The changelog doesn\'t capture the full
extent of the work, special thanks to Ralf Gommers, Sayed Adel, Stéfan
van der Walt, and Matti Picus who did much of the work in the main
development branch.

The highlights of this release are:

-   Python 3.12.0 support.
-   Cython 3.0.0 compatibility.
-   Use of the Meson build system
-   Updated SIMD support

The Python versions supported in this release are 3.9-3.12.

Build system changes

In this release, NumPy has switched to Meson as the build system and
meson-python as the build backend. Installing NumPy or building a wheel
can be done with standard tools like `pip` and `pypa/build`. The
following are supported:

-   Regular installs: `pip install numpy` or (in a cloned repo)
 `pip install .`
-   Building a wheel: `python -m build` (preferred), or `pip wheel .`
-   Editable installs: `pip install -e . --no-build-isolation`
-   Development builds through the custom CLI implemented with
 [spin](https://github.com/scientific-python/spin): `spin build`.

All the regular `pip` and `pypa/build` flags (e.g.,
`--no-build-isolation`) should work as expected.

NumPy-specific build customization

Many of the NumPy-specific ways of customizing builds have changed. The
`NPY_*` environment variables which control BLAS/LAPACK, SIMD,
threading, and other such options are no longer supported, nor is a
`site.cfg` file to select BLAS and LAPACK. Instead, there are
command-line flags that can be passed to the build via `pip`/`build`\'s
config-settings interface. These flags are all listed in the
`meson_options.txt` file in the root of the repo. Detailed documented
will be available before the final 1.26.0 release; for now please see
[the SciPy \"building from source\"docs](http://scipy.github.io/devdocs/building/index.html) since most
build customization works in an almost identical way in SciPy as it does
in NumPy.

Build dependencies

While the runtime dependencies of NumPy have not changed, the build
dependencies have. Because we temporarily vendor Meson and meson-python,
there are several new dependencies - please see the `[build-system]`
section of `pyproject.toml` for details.

Troubleshooting

This build system change is quite large. In case of unexpected issues,
it is still possible to use a `setup.py`-based build as a temporary
workaround (on Python 3.9-3.11, not 3.12), by copying
`pyproject.toml.setuppy` to `pyproject.toml`. However, please open an
issue with details on the NumPy issue tracker. We aim to phase out
`setup.py` builds as soon as possible, and therefore would like to see
all potential blockers surfaced early on in the 1.26.0 release cycle.

Contributors

A total of 11 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

-   Bas van Beek
-   Charles Harris
-   Matti Picus
-   Melissa Weber Mendonça
-   Ralf Gommers
-   Sayed Adel
-   Sebastian Berg
-   Stefan van der Walt
-   Tyler Reddy
-   Warren Weckesser

Pull requests merged

A total of 18 pull requests were merged for this release.

-   [24305](https://github.com/numpy/numpy/pull/24305): MAINT: Prepare 1.26.x branch for development
-   [24308](https://github.com/numpy/numpy/pull/24308): MAINT: Massive update of files from main for numpy 1.26
-   [24322](https://github.com/numpy/numpy/pull/24322): CI: fix wheel builds on the 1.26.x branch
-   [24326](https://github.com/numpy/numpy/pull/24326): BLD: update openblas to newer version
-   [24327](https://github.com/numpy/numpy/pull/24327): TYP: Trim down the `_NestedSequence.__getitem__` signature
-   [24328](https://github.com/numpy/numpy/pull/24328): BUG: fix choose refcount leak
-   [24337](https://github.com/numpy/numpy/pull/24337): TST: fix running the test suite in builds without BLAS/LAPACK
-   [24338](https://github.com/numpy/numpy/pull/24338): BUG: random: Fix generation of nan by dirichlet.
-   [24340](https://github.com/numpy/numpy/pull/24340): MAINT: Dependabot updates from main
-   [24342](https://github.com/numpy/numpy/pull/24342): MAINT: Add back NPY_RUN_MYPY_IN_TESTSUITE=1
-   [24353](https://github.com/numpy/numpy/pull/24353): MAINT: Update `extbuild.py` from main.
-   [24356](https://github.com/numpy/numpy/pull/24356): TST: fix distutils tests for deprecations in recent setuptools\...
-   [24375](https://github.com/numpy/numpy/pull/24375): MAINT: Update cibuildwheel to version 2.15.0
-   [24381](https://github.com/numpy/numpy/pull/24381): MAINT: Fix codespaces setup.sh script
-   [24403](https://github.com/numpy/numpy/pull/24403): ENH: Vendor meson for multi-target build support
-   [24404](https://github.com/numpy/numpy/pull/24404): BLD: vendor meson-python to make the Windows builds with SIMD\...
-   [24405](https://github.com/numpy/numpy/pull/24405): BLD, SIMD: The meson CPU dispatcher implementation
-   [24406](https://github.com/numpy/numpy/pull/24406): MAINT: Remove versioneer

Checksums

MD5

 875d02016f215f8ce2513453393f0089  numpy-1.26.0b1-cp310-cp310-macosx_10_9_x86_64.whl
 7df1856729096fbbbbb82b58c1695810  numpy-1.26.0b1-cp310-cp310-macosx_11_0_arm64.whl
 928037510906572ecadb154b8089853f  numpy-1.26.0b1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 93fb7c8a0e7af169c9bf42d8bfa17c2c  numpy-1.26.0b1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 a865069d224bf3830671de8e1f374344  numpy-1.26.0b1-cp310-cp310-musllinux_1_1_x86_64.whl
 c53d1d8cb653fc08bd3f931e4c965430  numpy-1.26.0b1-cp310-cp310-win_amd64.whl
 c7e212fbb7e64231747c6c8aac0f8678  numpy-1.26.0b1-cp311-cp311-macosx_10_9_x86_64.whl
 f2df03cdaee283c1f7486d2f66e497dd  numpy-1.26.0b1-cp311-cp311-macosx_11_0_arm64.whl
 8af359b78166474b7a621a482f3073fd  numpy-1.26.0b1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 4eec2761b87ccd43028697410ed8909d  numpy-1.26.0b1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 d9f0b03e455e9e99bdbe69e2e729c197  numpy-1.26.0b1-cp311-cp311-musllinux_1_1_x86_64.whl
 dd1c5e4492988e2b3641602b295e7de3  numpy-1.26.0b1-cp311-cp311-win_amd64.whl
 88e35ab901c8315ccdb172abc0d2350c  numpy-1.26.0b1-cp312-cp312-macosx_10_9_x86_64.whl
 ad426a4203844eaa8de6b519e94dc2c0  numpy-1.26.0b1-cp312-cp312-macosx_11_0_arm64.whl
 2e0e7a297de88cfe930c205b1ab8fdb0  numpy-1.26.0b1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 5d4ea12ab53e506a9887ab8a587f68f6  numpy-1.26.0b1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 1b3c3a80d2fb928b753545ded60312f3  numpy-1.26.0b1-cp312-cp312-musllinux_1_1_x86_64.whl
 e27356122ee42d84f6965ac802792bc3  numpy-1.26.0b1-cp312-cp312-win_amd64.whl
 1cc0d71476548fa30c27a542e3c3f9bf  numpy-1.26.0b1-cp39-cp39-macosx_10_9_x86_64.whl
 ec4882af449c1754cc7af84a82305aed  numpy-1.26.0b1-cp39-cp39-macosx_11_0_arm64.whl
 142493180019de1ec22c4510bf650366  numpy-1.26.0b1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 4a0c76b75fa36c54c0d2a9107c838910  numpy-1.26.0b1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 cb4d1c3b95e3a2662f94475b4b525da0  numpy-1.26.0b1-cp39-cp39-musllinux_1_1_x86_64.whl
 afa3f60467530e022eb1a584a8c48f84  numpy-1.26.0b1-cp39-cp39-win_amd64.whl
 35c77e2f2b25225ae62354f91c26a693  numpy-1.26.0b1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
 1986181def7286ae37ced5df7c0ca312  numpy-1.26.0b1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 e013942d0d71cb6a680afa89c9aa5259  numpy-1.26.0b1-pp39-pypy39_pp73-win_amd64.whl
 3268568cee06327fa34175aa3805829d  numpy-1.26.0b1.tar.gz

SHA256

 9a74361204dc604ba53916ed55aef0ca73e7aa3d0b7e47e1c28aece8c2ad4f59  numpy-1.26.0b1-cp310-cp310-macosx_10_9_x86_64.whl
 ab9e86bb7c9d3e009945b24a92318ff5d8c245e0e0aaaa765825c4561c292d53  numpy-1.26.0b1-cp310-cp310-macosx_11_0_arm64.whl
 b0b73599c80b29dfa7f812cb2e8738ce3f058b413e9f2f478e3cc4e038bb8f8e  numpy-1.26.0b1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 4a6d4c99396c57e02b0181f01ba42b482f327774057e51fb7fb390a130c95cff  numpy-1.26.0b1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 02af7482f34aeb9658ece615c922942f1a3908c449a9a6cd9f33fa233ce486d4  numpy-1.26.0b1-cp310-cp310-musllinux_1_1_x86_64.whl
 5a8f04e957259ef93a1e4a29da0b64d49ee842af456257bbb7253925cfe2f7bd  numpy-1.26.0b1-cp310-cp310-win_amd64.whl
 f71e10402e705aaa5908464e489d38e6583c48e40a4721f83195772178c7da9f  numpy-1.26.0b1-cp311-cp311-macosx_10_9_x86_64.whl
 94d5572fea8dca0fa929da9d17fa49e525ceee1e59b04372dfa5bd8a5f688f5f  numpy-1.26.0b1-cp311-cp311-macosx_11_0_arm64.whl
 1f88e6fe42b0d6418e53332e525b299762dbd9e33055d2e0398e6298da5b0cc9  numpy-1.26.0b1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 c466707e5ce5a44caadb85fd672a5ce0bfc060012df465771e7b10506e1e5dad  numpy-1.26.0b1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 16313a28cf703ae722b3ac139809360ffef81a45e758f196e538be3bcbee85c9  numpy-1.26.0b1-cp311-cp311-musllinux_1_1_x86_64.whl
 ea85e8e297af49d30830177ecb0c54d1cbca051e4306161f3ceabfa66560b17c  numpy-1.26.0b1-cp311-cp311-win_amd64.whl
 321a063fabc302931029f831f284cf43c301fdeead1b15df2f8aa87673294d4d  numpy-1.26.0b1-cp312-cp312-macosx_10_9_x86_64.whl
 dc36a9e8df48b72dad668d6f4036ed477d8bc2cb1f7a23b688e8e8057afdfee3  numpy-1.26.0b1-cp312-cp312-macosx_11_0_arm64.whl
 3c6c5804671fa1697e3d0cbc608a65c55794fb6682f4e04e9f6d65d0ddfc47c7  numpy-1.26.0b1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 3aa806da215e9c10ba89e9037a69c7a56367e059615679ef1a5cf937eedfbf61  numpy-1.26.0b1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 b66135c02ee55f9113dce3c8c5130b5feaead8767cd2c7ad36547a3d5e264230  numpy-1.26.0b1-cp312-cp312-musllinux_1_1_x86_64.whl
 87f2799f475e9e7aee69254dfe357975b163d409550d4641a0bca4cb4f64b725  numpy-1.26.0b1-cp312-cp312-win_amd64.whl
 2b258f67ca4a8245c74470da66a87684ddb3f06dde98760efc7ca792a44ee254  numpy-1.26.0b1-cp39-cp39-macosx_10_9_x86_64.whl
 a31d9109ffed9fc5566e73346a076fffbc7db00e626579ae4d5dfec933b29bfc  numpy-1.26.0b1-cp39-cp39-macosx_11_0_arm64.whl
 18e29ab806ec5e0b05df900d44b3b257a5901c32fc3ddaeb818c520cd9279b4e  numpy-1.26.0b1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 216b47882877ea5272f279c08bf7e42935728f35c6db2e4843b37db7b29ce016  numpy-1.26.0b1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 eea337d6d5ab2b6eb657b3f18e8b57a280f16fb5f94df484d9c1a8d3450d9ae9  numpy-1.26.0b1-cp39-cp39-musllinux_1_1_x86_64.whl
 db698c9008217c54a8005ea58bd5836241d7b519c8bb16a698a1b4ec4ca296a8  numpy-1.26.0b1-cp39-cp39-win_amd64.whl
 f250b3099649137f1021f8f95a9404273bcb7539f0bef6d6cf2c91260285edc4  numpy-1.26.0b1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
 22584a41b1be30543dd8c030affc90d8cb7ec19a56fda7f27fc33f64f8b0fbaa  numpy-1.26.0b1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 8aefe8ab1228e00146e5ae88290c7fdb8221aef45b357aed7f3dff6ac3b3b25a  numpy-1.26.0b1-pp39-pypy39_pp73-win_amd64.whl
 c67eea90827e1e9aa220a3fc380ce8776428deba8ac9e7c931ce7b69e8dce115  numpy-1.26.0b1.tar.gz

1.25.2

discovered after the 1.25.1 release. This is the last planned release in
the 1.25.x series, the next release will be 1.26.0, which will use the
meson build system and support Python 3.12. The Python versions
supported by this release are 3.9-3.11.

Contributors

A total of 13 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

-   Aaron Meurer
-   Andrew Nelson
-   Charles Harris
-   Kevin Sheppard
-   Matti Picus
-   Nathan Goldbaum
-   Peter Hawkins
-   Ralf Gommers
-   Randy Eckenrode +
-   Sam James +
-   Sebastian Berg
-   Tyler Reddy
-   dependabot\[bot\]

Pull requests merged

A total of 19 pull requests were merged for this release.

-   [24148](https://github.com/numpy/numpy/pull/24148): MAINT: prepare 1.25.x for further development
-   [24174](https://github.com/numpy/numpy/pull/24174): ENH: Improve clang-cl compliance
-   [24179](https://github.com/numpy/numpy/pull/24179): MAINT: Upgrade various build dependencies.
-   [24182](https://github.com/numpy/numpy/pull/24182): BLD: use `-ftrapping-math` with Clang on macOS
-   [24183](https://github.com/numpy/numpy/pull/24183): BUG: properly handle negative indexes in ufunc_at fast path
-   [24184](https://github.com/numpy/numpy/pull/24184): BUG: PyObject_IsTrue and PyObject_Not error handling in setflags
-   [24185](https://github.com/numpy/numpy/pull/24185): BUG: histogram small range robust
-   [24186](https://github.com/numpy/numpy/pull/24186): MAINT: Update meson.build files from main branch
-   [24234](https://github.com/numpy/numpy/pull/24234): MAINT: exclude min, max and round from `np.__all__`
-   [24241](https://github.com/numpy/numpy/pull/24241): MAINT: Dependabot updates
-   [24242](https://github.com/numpy/numpy/pull/24242): BUG: Fix the signature for np.array_api.take
-   [24243](https://github.com/numpy/numpy/pull/24243): BLD: update OpenBLAS to an intermeidate commit
-   [24244](https://github.com/numpy/numpy/pull/24244): BUG: Fix reference count leak in str(scalar).
-   [24245](https://github.com/numpy/numpy/pull/24245): BUG: fix invalid function pointer conversion error
-   [24255](https://github.com/numpy/numpy/pull/24255): BUG: Factor out slow `getenv` call used for memory policy warning
-   [24292](https://github.com/numpy/numpy/pull/24292): CI: correct URL in cirrus.star
-   [24293](https://github.com/numpy/numpy/pull/24293): BUG: Fix C types in scalartypes
-   [24294](https://github.com/numpy/numpy/pull/24294): BUG: do not modify the input to ufunc_at
-   [24295](https://github.com/numpy/numpy/pull/24295): BUG: Further fixes to indexing loop and added tests

Checksums

MD5

 33518ccb4da8ee11f1dee4b9fef1e468  numpy-1.25.2-cp310-cp310-macosx_10_9_x86_64.whl
 b5cb0c3b33ef6d93ec2888f25b065636  numpy-1.25.2-cp310-cp310-macosx_11_0_arm64.whl
 ae027dd38bd73f09c07220b2f516f148  numpy-1.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 88cf69dc3c0d293492c4c7e75dccf3d8  numpy-1.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 3e4e3ad02375ba71ae2cd05ccd97aba4  numpy-1.25.2-cp310-cp310-musllinux_1_1_x86_64.whl
 f52bb644682deb26c35ddec77198b65c  numpy-1.25.2-cp310-cp310-win32.whl
 4944cf36652be7560a6bcd0d5d56e8ea  numpy-1.25.2-cp310-cp310-win_amd64.whl
 5a56e639defebb7b871c8c5613960ca3  numpy-1.25.2-cp311-cp311-macosx_10_9_x86_64.whl
 3988b96944e7218e629255214f2598bd  numpy-1.25.2-cp311-cp311-macosx_11_0_arm64.whl
 302d65015ddd908a862fb3761a2a0363  numpy-1.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 e54a2e23272d1c5e5b278bd7e304c948  numpy-1.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 961d390e8ccaf11b1b0d6200d2c8b1c0  numpy-1.25.2-cp311-cp311-musllinux_1_1_x86_64.whl
 e113865b90f97079d344100c41226fbe  numpy-1.25.2-cp311-cp311-win32.whl
 834a147aa1adaec97655018b882232bd  numpy-1.25.2-cp311-cp311-win_amd64.whl
 fb55f93a8033bde854c8a2b994045686  numpy-1.25.2-cp39-cp39-macosx_10_9_x86_64.whl
 d96e754217d29bf045e082b695667e62  numpy-1.25.2-cp39-cp39-macosx_11_0_arm64.whl
 beab540edebecbb257e482dd9e498b44  numpy-1.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 e0d608c9e09cd8feba48567586cfefc0  numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 fe1fc32c8bb005ca04b8f10ebdcff6dd  numpy-1.25.2-cp39-cp39-musllinux_1_1_x86_64.whl
 41df58a9935c8ed869c92307c95f02eb  numpy-1.25.2-cp39-cp39-win32.whl
 a4371272c64493beb8b04ac46c4c1521  numpy-1.25.2-cp39-cp39-win_amd64.whl
 bbe051cbd5f8661dd054277f0b0f0c3d  numpy-1.25.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
 3f68e6b4af6922989dc0133e37db34ee  numpy-1.25.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 fc89421b79e8800240999d3a1d06a4d2  numpy-1.25.2-pp39-pypy39_pp73-win_amd64.whl
 cee1996a80032d47bdf1d9d17249c34e  numpy-1.25.2.tar.gz

SHA256

 db3ccc4e37a6873045580d413fe79b68e47a681af8db2e046f1dacfa11f86eb3  numpy-1.25.2-cp310-cp310-macosx_10_9_x86_64.whl
 90319e4f002795ccfc9050110bbbaa16c944b1c37c0baeea43c5fb881693ae1f  numpy-1.25.2-cp310-cp310-macosx_11_0_arm64.whl
 dfe4a913e29b418d096e696ddd422d8a5d13ffba4ea91f9f60440a3b759b0187  numpy-1.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 f08f2e037bba04e707eebf4bc934f1972a315c883a9e0ebfa8a7756eabf9e357  numpy-1.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 bec1e7213c7cb00d67093247f8c4db156fd03075f49876957dca4711306d39c9  numpy-1.25.2-cp310-cp310-musllinux_1_1_x86_64.whl
 7dc869c0c75988e1c693d0e2d5b26034644399dd929bc049db55395b1379e044  numpy-1.25.2-cp310-cp310-win32.whl
 834b386f2b8210dca38c71a6e0f4fd6922f7d3fcff935dbe3a570945acb1b545  numpy-1.25.2-cp310-cp310-win_amd64.whl
 c5462d19336db4560041517dbb7759c21d181a67cb01b36ca109b2ae37d32418  numpy-1.25.2-cp311-cp311-macosx_10_9_x86_64.whl
 c5652ea24d33585ea39eb6a6a15dac87a1206a692719ff45d53c5282e66d4a8f  numpy-1.25.2-cp311-cp311-macosx_11_0_arm64.whl
 0d60fbae8e0019865fc4784745814cff1c421df5afee233db6d88ab4f14655a2  numpy-1.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 60e7f0f7f6d0eee8364b9a6304c2845b9c491ac706048c7e8cf47b83123b8dbf  numpy-1.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 bb33d5a1cf360304754913a350edda36d5b8c5331a8237268c48f91253c3a364  numpy-1.25.2-cp311-cp311-musllinux_1_1_x86_64.whl
 5883c06bb92f2e6c8181df7b39971a5fb436288db58b5a1c3967702d4278691d  numpy-1.25.2-cp311-cp311-win32.whl
 5c97325a0ba6f9d041feb9390924614b60b99209a71a69c876f71052521d42a4  numpy-1.25.2-cp311-cp311-win_amd64.whl
 b79e513d7aac42ae918db3ad1341a015488530d0bb2a6abcbdd10a3a829ccfd3  numpy-1.25.2-cp39-cp39-macosx_10_9_x86_64.whl
 eb942bfb6f84df5ce05dbf4b46673ffed0d3da59f13635ea9b926af3deb76926  numpy-1.25.2-cp39-cp39-macosx_11_0_arm64.whl
 3e0746410e73384e70d286f93abf2520035250aad8c5714240b0492a7302fdca  numpy-1.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 d7806500e4f5bdd04095e849265e55de20d8cc4b661b038957354327f6d9b295  numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 8b77775f4b7df768967a7c8b3567e309f617dd5e99aeb886fa14dc1a0791141f  numpy-1.25.2-cp39-cp39-musllinux_1_1_x86_64.whl
 2792d23d62ec51e50ce4d4b7d73de8f67a2fd3ea710dcbc8563a51a03fb07b01  numpy-1.25.2-cp39-cp39-win32.whl
 76b4115d42a7dfc5d485d358728cdd8719be33cc5ec6ec08632a5d6fca2ed380  numpy-1.25.2-cp39-cp39-win_amd64.whl
 1a1329e26f46230bf77b02cc19e900db9b52f398d6722ca853349a782d4cff55  numpy-1.25.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
 4c3abc71e8b6edba80a01a52e66d83c5d14433cbcd26a40c329ec7ed09f37901  numpy-1.25.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 1b9735c27cea5d995496f46a8b1cd7b408b3f34b6d50459d9ac8fe3a20cc17bf  numpy-1.25.2-pp39-pypy39_pp73-win_amd64.whl
 fd608e19c8d7c55021dffd43bfe5492fab8cc105cc8986f813f8c3c048b38760  numpy-1.25.2.tar.gz

1.25.1

discovered after the 1.25.0 release. The Python versions supported by
this release are 3.9-3.11.

Contributors

A total of 10 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.

-   Andrew Nelson
-   Charles Harris
-   Developer-Ecosystem-Engineering
-   Hood Chatham
-   Nathan Goldbaum
-   Rohit Goswami
-   Sebastian Berg
-   Tim Paine +
-   dependabot\[bot\]
-   matoro +

Pull requests merged

A total of 14 pull requests were merged for this release.

-   [23968](https://github.com/numpy/numpy/pull/23968): MAINT: prepare 1.25.x for further development
-   [24036](https://github.com/numpy/numpy/pull/24036): BLD: Port long double identification to C for meson
-   [24037](https://github.com/numpy/numpy/pull/24037): BUG: Fix reduction `return NULL` to be `goto fail`
-   [24038](https://github.com/numpy/numpy/pull/24038): BUG: Avoid undefined behavior in array.astype()
-   [24039](https://github.com/numpy/numpy/pull/24039): BUG: Ensure `__array_ufunc__` works without any kwargs passed
-   [24117](https://github.com/numpy/numpy/pull/24117): MAINT: Pin urllib3 to avoid anaconda-client bug.
-   [24118](https://github.com/numpy/numpy/pull/24118): TST: Pin pydantic\<2 in Pyodide workflow
-   [24119](https://github.com/numpy/numpy/pull/24119): MAINT: Bump pypa/cibuildwheel from 2.13.0 to 2.13.1
-   [24120](https://github.com/numpy/numpy/pull/24120): MAINT: Bump actions/checkout from 3.5.2 to 3.5.3
-   [24122](https://github.com/numpy/numpy/pull/24122): BUG: Multiply or Divides using SIMD without a full vector can\...
-   [24127](https://github.com/numpy/numpy/pull/24127): MAINT: testing for IS_MUSL closes #24074
-   [24128](https://github.com/numpy/numpy/pull/24128): BUG: Only replace dtype temporarily if dimensions changed
-   [24129](https://github.com/numpy/numpy/pull/24129): MAINT: Bump actions/setup-node from 3.6.0 to 3.7.0
-   [24134](https://github.com/numpy/numpy/pull/24134): BUG: Fix private procedures in f2py modules

Checksums

MD5

 d09d98643db31e892fad11b8c2b7af22  numpy-1.25.1-cp310-cp310-macosx_10_9_x86_64.whl
 d5b8d3b0424e2af41018f35a087c4500  numpy-1.25.1-cp310-cp310-macosx_11_0_arm64.whl
 1007893b1a8bfd97d445a63d29d33642  numpy-1.25.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 6a62d7a6cee310b41dc872aa7f3d7e8b  numpy-1.25.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 e81f6264aecfa2269c5d29d10c362cbc  numpy-1.25.1-cp310-cp310-musllinux_1_1_x86_64.whl
 ab8ecd125ca86eac0b3ada67ab66dad6  numpy-1.25.1-cp310-cp310-win32.whl
 5466bebeaafcc3d6e1b98858d77ff945  numpy-1.25.1-cp310-cp310-win_amd64.whl
 f31b059256ae09b7b83df63f52d8371e  numpy-1.25.1-cp311-cp311-macosx_10_9_x86_64.whl
 099f74d654888869704469c321af845d  numpy-1.25.1-cp311-cp311-macosx_11_0_arm64.whl
 20d04dccd2bfca5cfd88780d1dc9a3f8  numpy-1.25.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 61dfd7c00638e83a7af59b86615ee9d2  numpy-1.25.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 4eb459c3d9479c4da2fdf20e4c4085d0  numpy-1.25.1-cp311-cp311-musllinux_1_1_x86_64.whl
 5e84e797866c68ba65fa89a4bf4ba8ce  numpy-1.25.1-cp311-cp311-win32.whl
 87bb1633b2e8029dbfa1e59f7ab22625  numpy-1.25.1-cp311-cp311-win_amd64.whl
 3fcf2eb5970d848a26abdff1b10228e7  numpy-1.25.1-cp39-cp39-macosx_10_9_x86_64.whl
 d71e1cbe18fe05944219e5a5be1796bf  numpy-1.25.1-cp39-cp39-macosx_11_0_arm64.whl
 5b457e10834c991bca84aae7eaa49f34  numpy-1.25.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 5cbb4c2f2892fafdf6f34fcb37c9e743  numpy-1.25.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 7d9d1ae23cf5420652088bfe8e048d89  numpy-1.25.1-cp39-cp39-musllinux_1_1_x86_64.whl
 7e5bed491b85f0d7c718d6809f9b3ed2  numpy-1.25.1-cp39-cp39-win32.whl
 838e97b751bebadf47e2196b2c88ffa2  numpy-1.25.1-cp39-cp39-win_amd64.whl
 9ba95d8d6004d9659d7728fe93f67be9  numpy-1.25.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
 fbccb20254a2dc85bdec549a03b8eb56  numpy-1.25.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 95e36689e6dd078caf11e7e2a2d5f5f1  numpy-1.25.1-pp39-pypy39_pp73-win_amd64.whl
 768d0ebf15e2242f4c7ca7565bb5dd3e  numpy-1.25.1.tar.gz

SHA256

 77d339465dff3eb33c701430bcb9c325b60354698340229e1dff97745e6b3efa  numpy-1.25.1-cp310-cp310-macosx_10_9_x86_64.whl
 d736b75c3f2cb96843a5c7f8d8ccc414768d34b0a75f466c05f3a739b406f10b  numpy-1.25.1-cp310-cp310-macosx_11_0_arm64.whl
 4a90725800caeaa160732d6b31f3f843ebd45d6b5f3eec9e8cc287e30f2805bf  numpy-1.25.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 6c6c9261d21e617c6dc5eacba35cb68ec36bb72adcff0dee63f8fbc899362588  numpy-1.25.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 0def91f8af6ec4bb94c370e38c575855bf1d0be8a8fbfba42ef9c073faf2cf19  numpy-1.25.1-cp310-cp310-musllinux_1_1_x86_64.whl
 fd67b306320dcadea700a8f79b9e671e607f8696e98ec255915c0c6d6b818503  numpy-1.25.1-cp310-cp310-win32.whl
 c1516db588987450b85595586605742879e50dcce923e8973f79529651545b57  numpy-1.25.1-cp310-cp310-win_amd64.whl
 6b82655dd8efeea69dbf85d00fca40013d7f503212bc5259056244961268b66e  numpy-1.25.1-cp311-cp311-macosx_10_9_x86_64.whl
 e8f6049c4878cb16960fbbfb22105e49d13d752d4d8371b55110941fb3b17800  numpy-1.25.1-cp311-cp311-macosx_11_0_arm64.whl
 41a56b70e8139884eccb2f733c2f7378af06c82304959e174f8e7370af112e09  numpy-1.25.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 d5154b1a25ec796b1aee12ac1b22f414f94752c5f94832f14d8d6c9ac40bcca6  numpy-1.25.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 38eb6548bb91c421261b4805dc44def9ca1a6eef6444ce35ad1669c0f1a3fc5d  numpy-1.25.1-cp311-cp311-musllinux_1_1_x86_64.whl
 791f409064d0a69dd20579345d852c59822c6aa087f23b07b1b4e28ff5880fcb  numpy-1.25.1-cp311-cp311-win32.whl
 c40571fe966393b212689aa17e32ed905924120737194b5d5c1b20b9ed0fb171  numpy-1.25.1-cp311-cp311-win_amd64.whl
 3d7abcdd85aea3e6cdddb59af2350c7ab1ed764397f8eec97a038ad244d2d105  numpy-1.25.1-cp39-cp39-macosx_10_9_x86_64.whl
 1a180429394f81c7933634ae49b37b472d343cccb5bb0c4a575ac8bbc433722f  numpy-1.25.1-cp39-cp39-macosx_11_0_arm64.whl
 d412c1697c3853c6fc3cb9751b4915859c7afe6a277c2bf00acf287d56c4e625  numpy-1.25.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
 20e1266411120a4f16fad8efa8e0454d21d00b8c7cee5b5ccad7565d95eb42dd  numpy-1.25.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 f76aebc3358ade9eacf9bc2bb8ae589863a4f911611694103af05346637df1b7  numpy-1.25.1-cp39-cp39-musllinux_1_1_x86_64.whl
 247d3ffdd7775bdf191f848be8d49100495114c82c2bd134e8d5d075fb386a1c  numpy-1.25.1-cp39-cp39-win32.whl
 1d5d3c68e443c90b38fdf8ef40e60e2538a27548b39b12b73132456847f4b631  numpy-1.25.1-cp39-cp39-win_amd64.whl
 35a9527c977b924042170a0887de727cd84ff179e478481404c5dc66b4170009  numpy-1.25.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
 0d3fe3dd0506a28493d82dc3cf254be8cd0d26f4008a417385cbf1ae95b54004  numpy-1.25.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
 012097b5b0d00a11070e8f2e261128c44157a8689f7dedcf35576e525893f4fe  numpy-1.25.1-pp39-pypy39_pp73-win_amd64.whl
 9a3a9f3a61480cc086117b426a8bd86869c213fc4072e606f01c4e4b66eb92bf  numpy-1.25.1.tar.gz

1.25.0

The NumPy 1.25.0 release continues the ongoing work to improve the
handling and promotion of dtypes, increase the execution speed, and
clarify the documentation. There has also been work to prepare for the
future NumPy 2.0.0 release, resulting in a large number of new and
expired deprecation. Highlights are:

-   Support for MUSL, there are now MUSL wheels.
-   Support the Fujitsu C/C++ compiler.
-   Object arrays are now supported in einsum
-   Su

@pyup-bot
Copy link
Collaborator Author

pyup-bot commented Mar 1, 2024

Closing this in favor of #408

@pyup-bot pyup-bot closed this Mar 1, 2024
@alimanfoo alimanfoo deleted the pyup-scheduled-update-2024-02-01 branch March 1, 2024 15:35
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant