A Two-Stage Predictive Process Monitoring Approach with Enabled State Filtering for High-Variability Suffixes
-
Create a python environment
conda create -n ESF python=3.8.0 conda activate ESF
-
Install pytorch
Following the official website's guidance (https://pytorch.org/get-started/locally/), install the corresponding PyTorch version based on your CUDA version. For our experiments, we use torch 1.12.1+cu116. The installation command is as follows:
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu116
-
Install other related dependencies
pip install -r requirements.txt
First, you need to specify data_path and dataset in configs/ESF_Model.yaml.
Here, Two training methods are provided here:
- Specify Hyperparameters:
Specify model_parameters in configs/ESF_Model.yaml.
python execute/ESF/train_ESF.py
- Use Optuna for Hyperparameter Optimization:
python execute/ESF/run_ESF.py
Evaluate the model:
python execute/ESF/test_ESF.py