Skip to content

Latest commit

 

History

History
46 lines (31 loc) · 1.19 KB

README.md

File metadata and controls

46 lines (31 loc) · 1.19 KB

A Two-Stage Predictive Process Monitoring Approach with Enabled State Filtering for High-Variability Suffixes

Installation

  1. Create a python environment

    conda create -n ESF python=3.8.0
    conda activate ESF 
  2. Install pytorch

    Following the official website's guidance (https://pytorch.org/get-started/locally/), install the corresponding PyTorch version based on your CUDA version. For our experiments, we use torch 1.12.1+cu116. The installation command is as follows:

    pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu116
  3. Install other related dependencies

    pip install -r requirements.txt

Train

First, you need to specify data_path and dataset in configs/ESF_Model.yaml.

Here, Two training methods are provided here:

  1. Specify Hyperparameters: Specify model_parameters in configs/ESF_Model.yaml.
    python execute/ESF/train_ESF.py
  2. Use Optuna for Hyperparameter Optimization:
    python execute/ESF/run_ESF.py

Test

Evaluate the model:

python execute/ESF/test_ESF.py