Skip to content

zijguo/HighDim-Additive-Inference

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DLL

CRAN status

The goal of DLL is to implement the Decorrelated Local Linear estimator proposed in <arxiv:1907.12732>. It constructs the confidence interval for the derivative of the function of interest under the high-dimensional sparse additive model.

Installation

You can install the released version of DLL from CRAN with:

install.packages("DLL")

Example

This is a basic example which shows you how to solve a common problem:

library(DLL)
library(MASS)
# evaluation points
d0 = c(-0.5,0.25)

f = function(x) 1.5*sin(x)
f.deriv = function(x) 1.5*cos(x)
g1 = function(x) 2*exp(-x/2)
g2 = function(x) (x-1)^2 - 25/12
g3 = function(x) x - 1/3
g4 = function(x) 0.75*x
g5 = function(x) 0.5*x


# sample size and dimension of X
n = 500
p = 500

# covariance structure of D and X
Cov_Matrix = toeplitz(c(1, 0.7, 0.5, 0.3, seq(0.1, 0, length.out = p-3)))

set.seed(123)
# X represents the (D,X) here
X = mvrnorm(n,rep(-0.25,p+1),Sigma = Cov_Matrix)
e = rnorm(n,sd=1)
# generating response
y = f(X[,1]) + g1(X[,2]) + g2(X[,3]) + g3(X[,4]) + g4(X[,5]) + g5(X[,6]) + e

### DLL inference
DLL.model = DLL(X=X, y=y, D.ind = 1, d0 = d0)

true values

f.deriv(d0)
#> [1] 1.316374 1.453369

point estimates

DLL.model$est
#>            f1
#> -0.5 1.258581
#> 0.25 1.659544

standard errors

DLL.model$est.se
#>             f1
#> -0.5 0.3911074
#> 0.25 0.4301377

confidence interval

DLL.model$CI
#> $f1
#>          lower    upper
#> -0.5 0.4920249 2.025138
#> 0.25 0.8164900 2.502599

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages