Skip to content

Releases: yoshitomo-matsubara/torchdistill

PyTorch 2.5 support, model migrations, end of Python 3.8 support

15 Dec 22:17
d51f8b3
Compare
Choose a tag to compare

Python version

  • Update Python versions due to Python 3.8 EOL (PR #486)

Models

  • Migrate all bottleneck-injected models to sc2bench (PR #490)
  • Update with PyTorch Hub links (PR #489)
  • Update yaml example (PR #487)

Misc

  • Force-use pytorch hub when repo_or_dir is given (PR #488)
  • Explicitly add evaluate to dependency (PR #483)
  • Update versions (PRs #480, #491)

A new KD method, new benchmark results, and updated YAML constructors

13 Aug 05:07
4742b70
Compare
Choose a tag to compare

New method

  • Add KD with logits standardization (PR #460)

YAML configs

  • Fix the official config for SRD (Issue #471, PR #473)
  • Fix SRD config (Issue #471, PR #472)
  • Add os.path YAML constructors (PR #454)

Logs

  • Disable an auto-configuration for def_logger (Issue #465, PR #469)
  • Use warning (PR #468)

Documentation

  • Add a new benchmark (PR #464)
  • Update Projects page (PRs #456, #475)

Misc

  • Update README (PRs #461, #470)
  • Update a URL (PR #459)
  • Update GH Action vers (PRs #457, #458)
  • Update CITATION (PR #455)
  • Add a new DOI badge (PR #453)
  • Update version (PRs #452, #479)

New KD methods, updated YAML constructors, and low-level loss support

27 Mar 03:51
6668e6a
Compare
Choose a tag to compare

New methods

  • Add SRD method (PRs #436, #444, #446)
  • Add Knowledge Distillation from A Stronger Teacher method (PR #433)
  • Add Inter-Channel Correlation for Knowledge Distillation method (PR #432)

YAML constructor

  • Update functions in yaml_util (PR #447)
  • Fix docstrings and add import_call_method & yaml constructor (PR #442)

Distillation/Training boxes

  • Enable auxiliary model wrapper builder to redesign input model (PR #437)

Registries

  • Add low-level registry and get functions (PR #426)

Documentation

  • Update benchmarks (PR #435)
  • Fix a typo (PR #424)

Examples

Tests

  • Add a test case for import_call_method (PR #443)
  • Add import test (PR #441)

Misc

New generation with new features and documentation

06 Nov 06:24
335d3c1
Compare
Choose a tag to compare

torchdistill v1.0.0 Release Notes

This major release supports PyTorch 2.0 and contains a lot of new features, documentation support, and breaking changes.

PyYAML configurations and executable scripts with torchdistill <= v0.3.3 should be considered "legacy" and are no longer supported by torchdistill >= v1.0.0. New PyYAML configurations and executable scripts are provided for the major release.

This release adds support for Python 3.10 and 3.11, and Python 3.7 is no longer supported.

Documentation

Dependencies & Instantiation

  • Add getattr constructor (PR #325)
  • Make package arg optional (PR #322)
  • Enable dynamic module import/get/call (PR #319)
  • Add a function to import dependencies e.g., to register modules (PR #265)

Module registry

  • Add *args (PR #345)
  • Fix default value-related issues (PR #327)
  • No longer use lowered keys (PR #326, #332)
  • Disable lowering by default (PR #323)
  • Rename type/name key (PR #312)
  • Rename registry dicts and arguments for registry key (PR #269)
  • Raise errors when requested module keys are not registered (PR #263)
  • Enable naming modules to be registered (PR #262)

Distillation/Training boxes

  • Remove default forward_proc for transparency (PR #417)
  • Rename a forward_proc function (PR #414)
  • Simplify (D)DP wrapper init (PR #410)
  • Change the timing to print model setup info (PR #335)
  • Add an option to specify find_unused_parameters for DDP (PR #334)
  • Do not touch teacher model by default (PR #333)
  • Training box does not have to inherit nn.Module class (PR #317)
  • Add interfaces package to core (PR #310)
  • Update forward interfaces (PR #307, #308)
  • Rename post_process post_epoch_process for consistency (PR #306)
  • Consider CosineAnnealingWarmRestarts in default post-epoch process functions (PR #305)
  • Make some common procedures in training box registrable/replaceable (PR #304)
  • Introduce {pre,post}-{epoch,forward} processes and registries (PR #274)
  • Rename post_forward functions (PR #272)
  • Make loss as kwarg (PR #273)

Forward hooks

  • Fix initialization issues in IO dict for SELF_MODULE_PATH (PR #328)

Dataset modules

  • Redesign split_dataset and remove unused functions (PR #360)
  • Update CRD dataset wrapper (PR #352)
  • Fix a bug (PR #351)
  • Add default args and kwargs (PR #347)
  • Add get_dataset (PR #324)

Loss modules

  • Fix a typo (PR #413, #415)
  • Add doc artifacts and an option to pass pre-instantiated loss module (PR #399)
  • Add DictLossWrapper (PR #337)
  • Rename an old function name PR #309)
  • Rename single loss middle-level loss (PR #300)
  • Explicitly define criterion wrapper (PR #298)
  • Change concepts of OrgLoss and org_term (PR #296)
  • Rename loss-related classes and functions (PR #294)
  • Add default forward process function and KDLoss back as a single loss (PR #275)
  • Remove org loss module and introduce self-module path (PR #271)

Model modules

  • Support parameter operations (Discussion #387, PR #388)
  • Replace pretrained with weights (PR #354)

Auxiliary model wrapper modules

  • Add find_unused_parameters arg (PR #340)
  • Rename special in configs to auxiliary_model_wrapper (PR #291)
  • Rename special module for clarity (PR #276)

Optimizer/Scheduler modules

  • Fix bugs around optimizer/scheduler (PR #358)
  • epoch arg is deprecated for some LR schedulers (PR #338)

Examples

  • Revert legacy file paths to non-legacy ones (PR #419)
  • Update kwargs and scripts (PR #382)
  • Update yaml util and sample configs (CIFAR-10, CIFAR-100) for the next major release (PR #361)
  • Update sample script and configs (GLUE) for the next major release (PR #259)
  • --log was replaced with --run_log (PR #350)
  • dst_ckpt should be used when using -test_only (PR #349)
  • Simplify the semantic segmentation script (PR #339)
  • Move hardcoded-torchvision-specific code to local custom package (PR #331)
  • Update world_size, cudnn configs, and checkpoint message (PR #330)
  • Rename log argument due to the (abstract) conflict with torchrun (PR #329)
  • Restructure examples and export some example-specific packages (PR #320)
  • Add an option to disable torch.backend.cudnn.benchmark (PR #316)
  • Support stage-wise loading/saving checkpoints (PR #315)
  • Support src_ckpt and dst_ckpt for initialization and saving checkpoints respectively (PR #314)
  • Use legacy configs and scripts tentatively (PR #292, #295)
  • Add legacy examples and configs (PR #289)

Configs

  • Declare forward_proc explicitly (PR #416)
  • Add configs used in NLP-OSS 2023 paper (PR #407)
  • Fix value based on log (PR #284)
  • Update sample configs (ILSVRC 2012, COCO 2017, and PASCAL VOC 2012) for the next major release (PR #357)
  • Update official configs for the next major release (PR #355)
  • Merge single_/multi_stage directories (PR #346)
  • Rename variables (PR #344)
  • Rename "factor" "weight" (PR #302)
  • Restructure criterion (PR #301)
  • Consistently use "params" to indicate learnable parameters, not hyperparameters (PR #297)

Misc.

  • Add Google Analytics ID (PR #406)
  • Add sitemap.xml (PR #405)
  • Update timm repo (PR #375)
  • Add acknowledgments (PR #369)
  • Update file paths (PR #356)
  • Fix a typo and replace pretrained with weights (PR #353)
  • Remove the dict option as it is not intuitive for building transform(s) (PR #303)
  • Temporarily remove registry test (PR #293)
  • Add an important notice (PR #286)
  • Add read permission for content, following the new template (PR #284)
  • Refactor (PRs #268, #270, #283, #343)
  • Update README (PRs #252, #290, #299, #341, #342, #348, #364, #400, #409, #418)
  • Update versions (PRs #251, #391, #420)

Workflows

  • Add a GitHub Action for deploying Sphinx documentation (PR #404)

Updates, bug fixes, and end of apex support

09 Nov 07:23
2417b24
Compare
Choose a tag to compare

Updates in APIs/scripts

  • Add square-sized random crop option (PR #224)
  • Replace torch.no_grad() with torch.inference_mode() (PR #245)
  • Terminate apex support due to its maintenance mode (PRs #248, #249)

Bug fixes

  • Add a default value (Discussion #229, PR #230)
  • Fix a bug raised in torchvision (PR #231)
  • Fix a default parameter (PR #235)

Misc.

Minor bug fix and updates

05 Mar 22:15
7f533ba
Compare
Choose a tag to compare

Bug fix

  • Fix a potential bug in split_dataset (Issue #209, PR #210)

Misc.

  • Update GitHub workflow (PR #217)
  • Add local epoch for LambdaLR (PR #219)
  • Update versions (PRs #208, #220)

Minor updates

28 Dec 03:36
0f5b1e9
Compare
Choose a tag to compare

Minor updates

  • Freeze module before rebuild if applicable (PR #205)
  • Refactor and improve result summary message (PR #206)
  • Update version (PRs #204, #207)

Bug fix

26 Dec 02:07
7fc0466
Compare
Choose a tag to compare

Bug fix

  • strict should not be used here (PR #202)

Minor update

Example and minor updates

26 Dec 01:43
80d6dec
Compare
Choose a tag to compare

Example updates

  • Restructure and make download=True (PR #190)
  • Make log_freq configurable for test (PR #191)
  • Refactor (PR #192)
  • Probably torch.cuda.synchronize() is no longer needed (PR #194)
  • Add an option to use teacher output (PR #195)
  • Replace no_grad with inference_mode (PR #199)

Minor updates

  • Add strict arg (PR #193)
  • Add assert error message (PR #196)
  • Check if ckpt file path is string (PR #197)
  • Check if batch images are instance of Tensor (PR #198)
  • Update version (PRs #189, #200)

Add new features, PASCAL examples and pretrained models

17 Dec 04:30
ba665f7
Compare
Choose a tag to compare

New features

  • Add wrapped resize to enable specifying interpolation for resize (PR #182)
  • Add wrapped random crop resize to enable specifying interpolation for random crop resize (PR #183)
  • Enable to load ckpt containing only specific module and via URL (PR #187)

New examples and trained models

  • Add examples for PASCAL VOC 2012 (PRs #184, #186)
  • Update README (PR #185)
  • Add model weights of DeepLabv3 with ResNet-50/101 fine-tuned on PASCAL VOC 2012 (Segmentation)
mean IoU global pixelwise acc
DeepLabv3 w/ ResNet-50 80.6 95.7
DeepLabv3 w/ ResNet-101 82.4 96.2

Model implementations are available in torchvision. These model weights are originally pretrained on COCO 2017 dataset (available in torchvision) and then fine-tuned on PASCAL VOC 2012 (Segmentation) dataset.

Minor updates

  • Add a version constant (PR #175)
  • Rename and add functions for ResNet-50 and ResNet-101 (PR #176)
  • Add CITATION file (PR #178)
  • Update version (PRs #174, #188)
  • Update README (PRs #179, #180)