Skip to content

yanliang3612/material-discovery-literature

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 

Repository files navigation

material-discovery-literature

Awesome License: MIT

This repository contains a collection of resources and papers on materials discovery. If you have any relevant paper or codes to update the list, please pull a request or report an issue.

SE(3)-equivariant modelings for free molecules.

Capturing long-range interaction with reciprocal space neural network

Hongyu Yu, Liangliang Hong, Shiyou Chen, Xingao Gong, Hongjun Xiang
Arxiv 2022. [paper]
30 Nov 2022

SE(3)-equivariant and periodic-invariant modeling for crystal molecules.

Resolving the data ambiguity for periodic crystals

Daniel Widdowson, Vitaliy Kurlin
NeurIPS 2022. [paper]
18 Sep 2022

Periodic Graph Transformers for Crystal Material Property Prediction

Keqiang Yan, Yi Liu, Yuchao Lin, Shuiwang Ji
NeurIPS 2022. [paper]
23 Sep 2022

In-context Learning with Transformer Is Really Equivalent to a Contrastive Learning Pattern

Ruifeng Ren, Yong Liu
Arxiv 2023. [paper]
20 Oct 2023

Efficient Approximations of Complete Interatomic Potentials for Crystal Property Prediction

Yuchao Lin, Keqiang Yan, Youzhi Luo, Yi Liu, Xiaoning Qian, Shuiwang Ji
Arxiv 2023. [paper]
7 Nov 2023

Complete and Efficient Graph Transformers for Crystal Material Property Prediction

Keqiang Yan, Cong Fu, Xiaofeng Qian, Xiaoning Qian, Shuiwang Ji
ICLR 2024. [paper]
18 Mar 2024

Pretraining

A Crystal-Specific Pre-Training Framework for Crystal Material Property Prediction

Haomin Yu, Yanru Song, Jilin Hu, Chenjuan Guo, Bin Yang
Arxiv 2023. [paper]
8 Jun 2023

Pretraining Strategies for Structure Agnostic Material Property Prediction

Hongshuo Huang, Rishikesh Magar, Amir Barati Farimani
Journal of Chemical Information and Modeling 2024. [paper]
February 1, 2024

From Molecules to Materials: Pre-training Large Generalizable Models for Atomic Property Prediction

Nima Shoghi, Adeesh Kolluru, John R. Kitchin, Zachary W. Ulissi, C. Lawrence Zitnick, Brandon M. Wood
Arxiv 2024. [paper]
6 May 2024

A foundation model for atomistic materials chemistry

Ilyes Batatia, Philipp Benner, Yuan Chiang, Alin M. Elena, Dávid P. Kovács, Janosh Riebesell, Xavier R. Advincula, Mark Asta, Matthew Avaylon, William J. Baldwin, Fabian Berger, Noam Bernstein, Arghya Bhowmik, Samuel M. Blau, Vlad Cărare, James P. Darby, Sandip De, Flaviano Della Pia, Volker L. Deringer, Rokas Elijošius, Zakariya El-Machachi, Fabio Falcioni, Edvin Fako, Andrea C. Ferrari, Annalena Genreith-Schriever, Janine George, Rhys E. A. Goodall, Clare P. Grey, Petr Grigorev, Shuang Han, Will Handley, Hendrik H. Heenen, Kersti Hermansson, Christian Holm, Jad Jaafar, Stephan Hofmann, Konstantin S. Jakob, Hyunwook Jung, Venkat Kapil, Aaron D. Kaplan, Nima Karimitari, James R. Kermode, Namu Kroupa, Jolla Kullgren, Matthew C. Kuner, Domantas Kuryla, Guoda Liepuoniute, Johannes T. Margraf, Ioan-Bogdan Magdău, Angelos Michaelides, J. Harry Moore, Aakash A. Naik, Samuel P. Niblett, Sam Walton Norwood, Niamh O'Neill, Christoph Ortner, Kristin A. Persson, Karsten Reuter, Andrew S. Rosen, Lars L. Schaaf, Christoph Schran, Benjamin X. Shi, Eric Sivonxay, Tamás K. Stenczel, Viktor Svahn, Christopher Sutton, Thomas D. Swinburne, Jules Tilly, Cas van der Oord, Eszter Varga-Umbrich, Tejs Vegge, Martin Vondrák, Yangshuai Wang, William C. Witt, Fabian Zills, Gábor Csányi
Arxiv 2024. [paper]
29 Dec 2023

Capturing long-range interaction with reciprocal space neural network

Hongyu Yu, Liangliang Hong, Shiyou Chen, Xingao Gong, Hongjun Xiang
Arxiv 2024. [paper]
16 Oct 2023

Incompleteness of Atomic Structure Representations

Sergey N. Pozdnyakov, Michael J. Willatt, Albert P. Bartók, Christoph Ortner, Gábor Csányi, and Michele Ceriotti
Physical Review Letters 2022. [paper]
12 Oct 2020

Artificial Intelligence Driving Materials Discovery? Perspective on the Article: Scaling Deep Learning for Materials Discovery

Anthony K. Cheetham, Ram Seshadri
Chemistry of Materials 2024. [paper]
8 Apr 2024

Dynamic Gaussian Mesh: Consistent Mesh Reconstruction from Monocular Videos

Isabella Liu, Hao Su, Xiaolong Wang
Arxiv 2024. [paper]
22 Apr 2024

A Diffusion-Based Pre-training Framework for Crystal Property Prediction

Zixing Song, Ziqiao Meng, Irwin King
AAAI 2024. [paper]
23 Mar 2024

A Crystal-Specific Pre-Training Framework for Crystal Material Property Prediction

Haomin Yu, Yanru Song, Jilin Hu, Chenjuan Guo, Bin Yang
Arxiv 2023. [paper]
9 Jun 2023

ChatGPT in the Material Design: Selected Case Studies to Assess the Potential of ChatGPT

Jyotirmoy Deb, Lakshi Saikia, Kripa Dristi Dihingia, G Narahari Sastry
Arxiv 2024. [paper]
16 Oct 2023

Multi-modal Learning

SDFusion: Multimodal 3D Shape Completion, Reconstruction, and Generation

Yen-Chi Cheng, Hsin-Ying Lee, Sergey Tulyakov, Alexander Schwing, Liangyan Gui
CVPR 2023. [paper]
22 Mar 2023

From Text to Insight: Large Language Models for Materials Science Data Extraction

Mara Schilling-Wilhelmi, Martiño Ríos-García, Sherjeel Shabih, María Victoria Gil, Santiago Miret, Christoph T. Koch, José A. Márquez, Kevin Maik Jablonka
Arxiv 2024. [paper]
23 Jul 2024

Multi-modal conditioning for metal-organic frameworks generation using 3D modeling techniques

*Junkil Park, Youhan Lee, Jihan Kim *
Arxiv 2024. [paper]
05 July 2024

MatText: Do Language Models Need More than Text & Scale for Materials Modeling?

Nawaf Alampara, Santiago Miret, Kevin Maik Jablonka
Arxiv 2024. [paper]
28 Jun 2024

Multimodal learning for crystalline materials

Viggo Moro, Charlotte Loh, Rumen Dangovski, Ali Ghorashi, Andrew Ma, Zhuo Chen, Samuel Kim, Peter Y. Lu, Thomas Christensen, Marin Soljačić
Arxiv 2024. [paper]
12 Apr 2024

CrysMMNet: Multimodal Representation for Crystal Property Prediction

Kishalay Das, Pawan Goyal, Seung-Cheol Lee, Satadeep Bhattacharjee, Niloy Ganguly
Arxiv 2024. [paper]
9 Jun 2023

LLM-Prop: Predicting Physical And Electronic Properties of Crystalline Solids From Their Text Descriptions

Andre Niyongabo Rubungo, Craig Arnold, Barry P. Rand, Adji Bousso Dieng
Arxiv 2023. [paper]
21 Oct 2023

Graph-Text Contrastive Learning of Inorganic Crystal Structure toward a Foundation Model of Inorganic Materials

Keisuke Ozawa, Teppei Suzuki , Shunsuke Tonogai, Tomoya Itakura
Arxiv 2024. [paper]
15 April 2024

Fine-Tuned Language Models Generate Stable Inorganic Materials as Text

Nate Gruver, Anuroop Sriram, Andrea Madotto, Andrew Gordon Wilson, C. Lawrence Zitnick, Zachary Ulissi
Arxiv 2024. [paper]
6 Feb 2024

Materials science in the era of large language models: a perspective

Ge Lei, Ronan Docherty, Samuel J. Cooper
Arxiv 2024. [paper]
11 Mar 2024

LLMatDesign: Autonomous Materials Discovery with Large Language Models

Shuyi Jia, Chao Zhang, Victor Fung
Arxiv 2024. [paper]
19 Jun 2024

Integrating Chemistry Knowledge in Large Language Models via Prompt Engineering

Hongxuan Liu, Haoyu Yin, Zhiyao Luo, Xiaonan Wang
Arxiv 2024. [paper]
22 Apr 2024

Invariant Tokenization for Language Model Enabled Crystal Materials Generation

Keqiang Yan, Xiner Li, Hongyi Ling, Kenna Ashen, Carl Edwards, Raymundo Arroyave, Marinka Zitnik, Heng Ji, Xiaofeng Qian, Xiaoning Qian, Shuiwang Ji
NeurIPS 2024. [paper]
16 Oct 2023

LBNL: A foundation model for atomistic materials chemistry

Ilyes Batatia, Philipp Benner, Yuan Chiang, Alin M. Elena, Dávid P. Kovács, Janosh Riebesell, Xavier R. Advincula, Mark Asta, Matthew Avaylon, William J. Baldwin, Fabian Berger, Noam Bernstein, Arghya Bhowmik, Samuel M. Blau, Vlad Cărare, James P. Darby, Sandip De, Flaviano Della Pia, Volker L. Deringer, Rokas Elijošius, Zakariya El-Machachi, Fabio Falcioni, Edvin Fako, Andrea C. Ferrari, Annalena Genreith-Schriever, Janine George, Rhys E. A. Goodall, Clare P. Grey, Petr Grigorev, Shuang Han, Will Handley, Hendrik H. Heenen, Kersti Hermansson, Christian Holm, Jad Jaafar, Stephan Hofmann, Konstantin S. Jakob, Hyunwook Jung, Venkat Kapil, Aaron D. Kaplan, Nima Karimitari, James R. Kermode, Namu Kroupa, Jolla Kullgren, Matthew C. Kuner, Domantas Kuryla, Guoda Liepuoniute, Johannes T. Margraf, Ioan-Bogdan Magdău, Angelos Michaelides, J. Harry Moore, Aakash A. Naik, Samuel P. Niblett, Sam Walton Norwood, Niamh O'Neill, Christoph Ortner, Kristin A. Persson, Karsten Reuter, Andrew S. Rosen, Lars L. Schaaf, Christoph Schran, Benjamin X. Shi, Eric Sivonxay, Tamás K. Stenczel, Viktor Svahn, Christopher Sutton, Thomas D. Swinburne, Jules Tilly, Cas van der Oord, Eszter Varga-Umbrich, Tejs Vegge, Martin Vondrák, Yangshuai Wang, William C. Witt, Fabian Zills, Gábor Csányi
Arxiv 2024. [paper]
1 Mar 2024

Manifold

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, Steven Lovegrove
Arxiv 2019. [paper]
16 Jan 2019

Aligning Gradient and Hessian for Neural Signed Distance Function

Ruian Wang, Zixiong Wang, Yunxiao Zhang, Shuangmin Chen, Shiqing Xin, Changhe Tu, Wenping Wang, Great Hall
NeurIPS 2023 [paper]
16 Oct 2023

Generative Model

MOFDiff: Coarse-grained Diffusion for Metal-Organic Framework Design

Xiang Fu, Tian Xie, Andrew S. Rosen, Tommi Jaakkola, Jake Smith
ICLR 2024. [paper]
16 Oct 2023

Multi-modal conditioning for metal-organic frameworks generation using 3D modeling techniques

Junkil Park, Youhan Lee, Jihan Kim
Chemrxiv 2024. [paper]
05 July 2024

UniMat: Scalable Diffusion for Materials Generation

Sherry Yang, KwangHwan Cho, Amil Merchant, Pieter Abbeel, Dale Schuurmans, Igor Mordatch, Ekin Dogus Cubuk
Arxiv 2024. [paper]
3 Jun 2024

GenMS: Generative Hierarchical Materials Search

Sherry Yang, Simon Batzner, Ruiqi Gao, Muratahan Aykol, Alexander L. Gaunt, Brendan McMorrow, Danilo J. Rezende, Dale Schuurmans, Igor Mordatch, Ekin D. Cubuk
Arxiv 2024. [paper]
10 Sep 2024

About

The material discovery literature

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published