-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Moving code and math to separate folders
- Loading branch information
Showing
6 changed files
with
86 additions
and
0 deletions.
There are no files selected for viewing
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
\documentclass[12pt]{article} | ||
|
||
\usepackage[margin=1in]{geometry} | ||
\usepackage{amsmath,amsthm,amssymb} | ||
\usepackage{algorithmicx} | ||
\usepackage{algpseudocode} | ||
\usepackage{mathtools} | ||
\usepackage{float} | ||
\usepackage{etoolbox}\AtBeginEnvironment{algorithmic}{\small} | ||
|
||
%\setlength{\parindent}{4em} | ||
|
||
\newcommand{\N}{\mathbb{N}} | ||
\newcommand{\Z}{\mathbb{Z}} | ||
\newcommand{\Tr}{\mathrm{Tr}} | ||
\newcommand{\one}{\mathbf{1}} | ||
\DeclareMathOperator*{\argmax}{arg\,max} | ||
\DeclareMathOperator*{\argmin}{arg\,min} | ||
|
||
\newenvironment{theorem}[2][Theorem]{\begin{trivlist} | ||
\item[\hskip \labelsep {\bfseries #1}\hskip \labelsep {\bfseries #2.}]}{\end{trivlist}} | ||
\newenvironment{lemma}[2][Lemma]{\begin{trivlist} | ||
\item[\hskip \labelsep {\bfseries #1}\hskip \labelsep {\bfseries #2.}]}{\end{trivlist}} | ||
\newenvironment{problem}[2][Problem]{\begin{trivlist} | ||
\item[\hskip \labelsep {\bfseries #1}\hskip \labelsep {\bfseries #2.}]}{\end{trivlist}} | ||
\newenvironment{reflection}[2][Reflection]{\begin{trivlist} | ||
\item[\hskip \labelsep {\bfseries #1}\hskip \labelsep {\bfseries #2.}]}{\end{trivlist}} | ||
\newenvironment{proposition}[2][Proposition]{\begin{trivlist} | ||
\item[\hskip \labelsep {\bfseries #1}\hskip \labelsep {\bfseries #2.}]}{\end{trivlist}} | ||
\newenvironment{corollary}[2][Corollary]{\begin{trivlist} | ||
\item[\hskip \labelsep {\bfseries #1}\hskip \labelsep {\bfseries #2.}]}{\end{trivlist}} | ||
|
||
\algnewcommand{\IfThenElse}[3]{\State \algorithmicif\ #1\ \algorithmicthen\ #2\ \algorithmicelse\ #3} | ||
|
||
\begin{document} | ||
|
||
|
||
\title{Pre-interview Task} | ||
\author{William Maxwell} | ||
\maketitle | ||
\paragraph{Problem 1a.} | ||
The $k$-means objective function on $n$ $d$-dimensional data points $x_1,\dots,x_n$ is given by \[J_{K\text{-means}} \coloneqq \sum_{i=1}^K \sum_{x_j \in C_i} \|x_j - c_i\|^2 \] where $c_i$ is the average over the points in the cluster $C_i$. Note that the $j$th component of $c_i$ is given by $c_i(j) = \frac{1}{|C_i|}\sum_{x \in C_i} x(j)$. | ||
Now, consider the intra-cluster kernel similarity given by $\Tr(HAH^T)$ where $A = X^TX$ and $H$ is a $k \times n$ matrix whose rows are normalized indicator vectors. Our goal is to show that $\mathrm{argmin} \, J_{k\text{-means}} = \mathrm{argmax} \, \Tr(HAH^T)$ where we are maximizing over all possible $H$'s. | ||
|
||
Given a feasible $H$ let $C_1,\dots,C_k$ be the partition given by its rows. This partition will correspond to the clusters in $k$-means. The cluster $C_i$ will be represented by the normalized indicator vector $\one_{C_i} / \sqrt{|C_i|}$. | ||
Define the vector $y_i = [x_1(i),\dots,x_n(i)]^T$, that is the $j$th component of $y_i$ is the $i$th component of the $j$th vector in our data set, $y_i(j) = x_j(i)$. Now, we compute the entries of $XH^T$. | ||
\begin{align*} | ||
(XH^T)_{ij} &= \sum_{k=1}^n y_i(k) \one_{C_j}(k)\\ | ||
&= \sum_{x \in C_j} \frac{x(i)}{\sqrt{|C_j|}} \\ | ||
&= \sqrt{|C_j|} c_j(i) | ||
\end{align*} | ||
Hence, $(XH^T)_{ij}^2 = |C_j|c_j^2(i)$. Next, we compute the trace. | ||
\begin{align*} | ||
\Tr(HX^TXH^T) &= \|XH^T\|^2_F \\ | ||
&= \sum_{i=1}^d \sum_{j=1}^K \left( X H^T \right)^2_{ij} \\ | ||
&= \sum_{i=1}^d \sum_{j=1}^K |C_j| c_j^2(i) \\ | ||
&= \sum_{j=1}^K |C_j| \|c_j\|^2 | ||
\end{align*} | ||
|
||
Returning to the $K$-means objective, we have | ||
\begin{align*} | ||
\sum_{k=1}^K \sum_{x \in C_k} \|x - c_k\|^2 &= \sum_{i=k}^K \sum_{x \in C_k} \|x\|^2 + \|c_k\|^2 - 2x^Tc_k \\ | ||
&= \sum_{k=1}^K |C_k|\|c_k\|^2 + \sum_{k=1}^K \sum_{x \in C_k} \|x\|^2 - 2x^T c_k | ||
\end{align*} | ||
|
||
Stuff from paper: | ||
\begin{align*} | ||
\sum_{k=1}^K \sum_{i \in C_k} \|x_i - c_k\|^2 &= \sum_{k=1}^K \sum_{i \in C_k} \|x_i\|^2 + \|c_k\|^2 - 2x_i^T c_k \\ | ||
&= \sum_{i=1}^n \|x_i\|^2 + \sum_{k=1}^K \sum_{i \in C_k} \|c_k\|^2 - 2 \sum_{k=1}^K \sum_{i \in C_k} x_i^T c_k \\ | ||
&= \sum_{i=1}^n \|x_i\|^2 + \sum_{k=1}^K |C_k| \|c_k\|^2 - 2 \sum_{k=1}^K |C_k| \|c_k\|^2 \\ | ||
&= \sum_{i=1}^n \|x_i\|^2 - \sum_{k=1}^K |C_k|\|c_k\|^2\\ | ||
&= \sum_{i=1}^n \|x_i\|^2 - \sum_{k=1}^K \frac{1}{|C_k|} \sum_{i, j \in C_k} x_i^T x_j | ||
\end{align*} | ||
|
||
NOTE: \[(HAH^T)_{ij} = \frac{1}{\sqrt{n_i n_j}} \sum_{x \in C_i}\sum_{y \in C_j} x^T y \] | ||
|
||
\paragraph{Problem 1b.} | ||
\begin{align*} | ||
\argmin_{H} J_{k\text{-means}} &= \argmax_H \Tr(HAH^T) \\ | ||
&= \argmin_H -2\Tr(HAH^T) \\ | ||
&= \argmin_H \|A\|^2 -2 \Tr(HAH^T) + \|H^TH\|^2 \\ | ||
&= \argmin_H \|A - HH^T\|^2 | ||
\end{align*} | ||
|
||
\end{document} | ||
|