Simple python wrapper to SMAC, a versatile tool for optimizing algorithm parameters.
fmin(objective, x0, xmin, xmax, x0_int, xmin_int, xmax_int, xcategorical, params)
min_x f(x) s.t. xmin < x < xmax
objective: The objective function that should be optimized.
SMAC (and therefore also pysmac) requires Java 7.
pip install pysmac
python setup.py install
Let's take for example the Branin function. (Note that the branin function is not the ideal use case for SMAC, which is designed to be a global optimization tool for costly functions. That said, it'll serve the purpose of checking that everything is working.)
import numpy as np
def branin(x):
b = (5.1 / (4.*np.pi**2))
c = (5. / np.pi)
t = (1. / (8.*np.pi))
return 1.*(x[1]-b*x[0]**2+c*x[0]-6.)**2+10.*(1-t)*np.cos(x[0])+10.
For x1 ∈ [-5, 10], x2 ∈ [0, 15] the function reaches a minimum value of: 0.397887.
Note: fmin accepts any function that has a parameter called x
(the input array) and returns an objective value.
from pysmac.optimize import fmin
xmin, fval = fmin(branin, x0=(0,0),xmin=(-5, 0), xmax=(10, 15), max_evaluations=5000)
As soon as the evaluations are finished, we can check the output:
>>> xmin
{'x': array([ 3.14305644, 2.27827543])}
>>> fval
0.397917
Let's run the objective function with the found parameters:
>>> branin(**xmin)
0.397917
SMAC is free for academic & non-commercial usage. Please contact Frank Hutter to discuss obtaining a license for commercial purposes.
Note: make sure there is no naming collission with the parameter names and the custom arguments.
def minfunc(x, custom_arg1, custom_arg2):
print "custom_arg1:", custom_arg1
print "custom_arg2:", custom_arg2
return 1
xmin, fval = fmin(minfunc, x0=(0,0),xmin=(-5, 0), xmax=(10, 15),
max_evaluations=5000,
custom_args={"custom_arg1": "test",
"custom_arg2": 123})
SMAC can run CV-folds intelligently, that is if a parameter configuration does not perform well a subset of the CV folds it can choose to evaluate other configurations rather than first running all the other folds, which will save time. In order to use this feature, just specify the cv_folds
parameter as well add an cv_fold
parameter to the objective function:
def minfunc(x, cv_fold):
#...
return somevalue
xmin, fval = fmin(minfunc, x0=(0,0),xmin=(-5, 0), xmax=(10, 15), cv_folds=10, max_evaluations=5000)
Integer parameters can be encoded as follows:
def minfunc(x, x_int):
print "x: ", x
print "x_int: ", x_int
return 1.
xmin, fval = fmin(minfunc,
x0=(0,0), xmin=(-5, 0), xmax=(10, 15),
x0_int=(0,0), xmin_int=(-5, 0), xmax_int=(10, 15),
max_evaluations=5000)
Categorical parameters can be specified as a dictionary of lists of values they can take on, e.g.:
categorical_params = {"param1": [1,2,3,4,5,6,7],
"param2": ["string1", "string2", "string3"]}
def minfunc(x_categorical):
print "param1: ", x_categorical["param1"]
print "param2: ", x_categorical["param2"]
return 1.
xmin, fval = fmin(minfunc,
x_categorical=categorical_params,
max_evaluations=5000)
Let's for example setup 20 categorical parameters that can either take 1 or 0 as well as the objective function being the number of parameters minus the sum of all the parameter values. This objective function will be minimized if all parameters are set to 1.
ndim = 10
categorical_params = {}
for i in range(ndim):
categorical_params["%d" % i] = [0, 1]
def sum_binary_params(x_categorical):
return len(x_categorical.values()) - sum(x_categorical.values())
Now we can go ahead and let SMAC minimize the objective function:
xmin, fval = fmin(minfunc,
x_categorical=categorical_params,
max_evaluations=500)
Let's look at the result:
xmin = {'x_categorical': {'0': 1,
'1': 1,
'2': 1,
'3': 1,
'4': 1,
'5': 1,
'6': 1,
'7': 1,
'8': 1,
'9': 1}}