Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

QUIC Initial Packet Decryption and Parsing #37

Merged
merged 12 commits into from
Jul 26, 2024
2 changes: 2 additions & 0 deletions core/Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,8 @@ thiserror = "1.0"
tls-parser = { git = "https://github.com/thegwan/tls-parser.git" }
toml = "0.5.11"
x509-parser = "0.13.2"
rust-crypto="0.2.36"
ring = "0.17.8"

[features]
timing = []
Expand Down
5 changes: 3 additions & 2 deletions core/src/protocols/stream/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ pub mod tls;

use self::dns::{parser::DnsParser, Dns};
use self::http::{parser::HttpParser, Http};
use self::quic::{parser::QuicParser, QuicPacket};
use self::quic::parser::QuicParser;
use self::tls::{parser::TlsParser, Tls};
use crate::conntrack::conn::conn_info::ConnState;
use crate::conntrack::conn_id::FiveTuple;
Expand All @@ -22,6 +22,7 @@ use crate::subscription::*;
use std::str::FromStr;

use anyhow::{bail, Result};
use quic::QuicConn;
use strum_macros::EnumString;

/// Represents the result of parsing one packet as a protocol message.
Expand Down Expand Up @@ -195,7 +196,7 @@ pub enum SessionData {
Tls(Box<Tls>),
Dns(Box<Dns>),
Http(Box<Http>),
Quic(Box<QuicPacket>),
Quic(Box<QuicConn>),
Null,
}

Expand Down
328 changes: 328 additions & 0 deletions core/src/protocols/stream/quic/crypto.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,328 @@
// crypto.rs contains the cryptograpic functions needed to derive QUIC
// initial keys. These keys can be used to remove header protection and
// decrypt QUIC initial packets. This file is heavily based on Cloudflare's
// crypto module in their Rust implementation of QUIC, known as Quiche.
// Therefore, the original license from https://github.com/cloudflare/quiche/blob/master/quiche/src/crypto/mod.rs is below:

// Copyright (C) 2018-2019, Cloudflare, Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

use std::iter::repeat;

use crypto::aead::AeadDecryptor;
use crypto::aes::KeySize;
use crypto::aes_gcm::AesGcm;
use ring::aead;
use ring::hkdf;
use serde::Serialize;

use crate::protocols::stream::quic::parser::QuicVersion;
use crate::protocols::stream::quic::QuicError;

// The algorithm enum defines the available
// cryptographic algorithms used to secure
// QUIC packets.
#[derive(Copy, Clone, Debug, Serialize)]
pub enum Algorithm {
AES128GCM,
}

impl Algorithm {
fn get_ring_hp(self) -> &'static aead::quic::Algorithm {
match self {
Algorithm::AES128GCM => &aead::quic::AES_128,
}
}

fn get_ring_digest(self) -> hkdf::Algorithm {
match self {
Algorithm::AES128GCM => hkdf::HKDF_SHA256,
}
}

pub fn key_len(self) -> usize {
match self {
Algorithm::AES128GCM => 16,
}
}

pub fn tag_len(self) -> usize {
match self {
Algorithm::AES128GCM => 16,
}
}

pub fn nonce_len(self) -> usize {
match self {
Algorithm::AES128GCM => 12,
}
}

pub fn get_key_len(self) -> Option<KeySize> {
match self {
Algorithm::AES128GCM => Some(KeySize::KeySize128),
}
}
}

// The Open struct gives a return value
// that contains all of the components
// needed for HP removal and decryption
#[derive(Serialize)]
pub struct Open {
alg: Algorithm,

#[serde(skip_serializing)]
key_len: Option<KeySize>,

initial_key: Vec<u8>,

#[serde(skip_serializing)]
hp_key: aead::quic::HeaderProtectionKey,

iv: Vec<u8>,
}

impl Open {
pub fn new(alg: Algorithm, key: &[u8], iv: &[u8], hp_key: &[u8]) -> Result<Open, QuicError> {
Ok(Open {
alg,

key_len: alg.get_key_len(),

initial_key: key.to_vec(),

hp_key: aead::quic::HeaderProtectionKey::new(alg.get_ring_hp(), hp_key)
.map_err(|_| QuicError::CryptoFail)?,

iv: iv.to_vec(),
})
}

pub fn open_with_u64_counter(
&self,
counter: u64,
ad: &[u8],
buf: &mut [u8],
tag: &[u8],
) -> Result<Vec<u8>, QuicError> {
let nonce = make_nonce(&self.iv, counter);
let mut cipher = match self.alg {
Algorithm::AES128GCM => {
AesGcm::new(self.key_len.unwrap(), &self.initial_key, &nonce, ad)
}
};

let mut out: Vec<u8> = repeat(0).take(buf.len()).collect();

let rc = cipher.decrypt(buf, &mut out, tag);

if !rc {
return Err(QuicError::CryptoFail);
}

Ok(out)
}

pub fn new_mask(&self, sample: &[u8]) -> Result<[u8; 5], QuicError> {
let mask = self
.hp_key
.new_mask(sample)
.map_err(|_| QuicError::CryptoFail)?;

Ok(mask)
}

pub fn alg(&self) -> Algorithm {
self.alg
}

pub fn sample_len(&self) -> usize {
self.hp_key.algorithm().sample_len()
}
}
impl std::fmt::Debug for Open {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("Point")
.field("alg", &self.alg)
.field("iv", &self.iv)
.finish()
}
}

pub fn calc_init_keys(cid: &[u8], version: u32) -> Result<[Open; 2], QuicError> {
let aead = Algorithm::AES128GCM;
let key_len = aead.key_len();
let nonce_len = aead.nonce_len();
let initial_secret = derive_initial_secret(cid, version);

let mut secret = [0; 32];
let mut client_key = vec![0; key_len];
let mut client_iv = vec![0; nonce_len];
let mut client_hp_key = vec![0; key_len];

derive_client_initial_secret(&initial_secret, &mut secret)?;
derive_pkt_key(aead, &secret, &mut client_key)?;
derive_pkt_iv(aead, &secret, &mut client_iv)?;
derive_hdr_key(aead, &secret, &mut client_hp_key)?;

// Server.
let mut server_key = vec![0; key_len];
let mut server_iv = vec![0; nonce_len];
let mut server_hp_key = vec![0; key_len];

derive_server_initial_secret(&initial_secret, &mut secret)?;
derive_pkt_key(aead, &secret, &mut server_key)?;
derive_pkt_iv(aead, &secret, &mut server_iv)?;
derive_hdr_key(aead, &secret, &mut server_hp_key)?;

Ok([
Open::new(aead, &client_key, &client_iv, &client_hp_key)?,
Open::new(aead, &server_key, &server_iv, &server_hp_key)?,
])
}

fn derive_initial_secret(secret: &[u8], version: u32) -> hkdf::Prk {
const INITIAL_SALT_RFC9000: [u8; 20] = [
0x38, 0x76, 0x2c, 0xf7, 0xf5, 0x59, 0x34, 0xb3, 0x4d, 0x17, 0x9a, 0xe6, 0xa4, 0xc8, 0x0c,
0xad, 0xcc, 0xbb, 0x7f, 0x0a,
];

const INITIAL_SALT_RFC9369: [u8; 20] = [
0x0d, 0xed, 0xe3, 0xde, 0xf7, 0x00, 0xa6, 0xdb, 0x81, 0x93, 0x81, 0xbe, 0x6e, 0x26, 0x9d,
0xcb, 0xf9, 0xbd, 0x2e, 0xd9,
];

const INITIAL_SALT_DRAFT29: [u8; 20] = [
0xaf, 0xbf, 0xec, 0x28, 0x99, 0x93, 0xd2, 0x4c, 0x9e, 0x97, 0x86, 0xf1, 0x9c, 0x61, 0x11,
0xe0, 0x43, 0x90, 0xa8, 0x99,
];

const INITIAL_SALT_DRAFT27: [u8; 20] = [
0xc3, 0xee, 0xf7, 0x12, 0xc7, 0x2e, 0xbb, 0x5a, 0x11, 0xa7, 0xd2, 0x43, 0x2b, 0xb4, 0x63,
0x65, 0xbe, 0xf9, 0xf5, 0x02,
];

let salt = match QuicVersion::from_u32(version) {
QuicVersion::Rfc9000 => &INITIAL_SALT_RFC9000,
QuicVersion::Rfc9369 => &INITIAL_SALT_RFC9369,
QuicVersion::Draft29 => &INITIAL_SALT_DRAFT29,
QuicVersion::Draft27 | QuicVersion::Draft28 | QuicVersion::Mvfst27 => &INITIAL_SALT_DRAFT27,
_ => &INITIAL_SALT_RFC9000,
};

let salt = hkdf::Salt::new(hkdf::HKDF_SHA256, salt);
salt.extract(secret)
}

fn derive_client_initial_secret(prk: &hkdf::Prk, out: &mut [u8]) -> Result<(), QuicError> {
const LABEL: &[u8] = b"client in";
hkdf_expand_label(prk, LABEL, out)
}

fn derive_server_initial_secret(prk: &hkdf::Prk, out: &mut [u8]) -> Result<(), QuicError> {
const LABEL: &[u8] = b"server in";
hkdf_expand_label(prk, LABEL, out)
}

pub fn derive_hdr_key(aead: Algorithm, secret: &[u8], out: &mut [u8]) -> Result<(), QuicError> {
const LABEL: &[u8] = b"quic hp";

let key_len = aead.key_len();

if key_len > out.len() {
return Err(QuicError::CryptoFail);
}

let secret = hkdf::Prk::new_less_safe(aead.get_ring_digest(), secret);
hkdf_expand_label(&secret, LABEL, &mut out[..key_len])
}

pub fn derive_pkt_key(aead: Algorithm, secret: &[u8], out: &mut [u8]) -> Result<(), QuicError> {
const LABEL: &[u8] = b"quic key";

let key_len = aead.key_len();

if key_len > out.len() {
return Err(QuicError::CryptoFail);
}

let secret = hkdf::Prk::new_less_safe(aead.get_ring_digest(), secret);
hkdf_expand_label(&secret, LABEL, &mut out[..key_len])
}

pub fn derive_pkt_iv(aead: Algorithm, secret: &[u8], out: &mut [u8]) -> Result<(), QuicError> {
const LABEL: &[u8] = b"quic iv";

let nonce_len = aead.nonce_len();

if nonce_len > out.len() {
return Err(QuicError::CryptoFail);
}

let secret = hkdf::Prk::new_less_safe(aead.get_ring_digest(), secret);
hkdf_expand_label(&secret, LABEL, &mut out[..nonce_len])
}

fn hkdf_expand_label(prk: &hkdf::Prk, label: &[u8], out: &mut [u8]) -> Result<(), QuicError> {
const LABEL_PREFIX: &[u8] = b"tls13 ";

let out_len = (out.len() as u16).to_be_bytes();
let label_len = (LABEL_PREFIX.len() + label.len()) as u8;

let info = [&out_len, &[label_len][..], LABEL_PREFIX, label, &[0][..]];

prk.expand(&info, ArbitraryOutputLen(out.len()))
.map_err(|_| QuicError::CryptoFail)?
.fill(out)
.map_err(|_| QuicError::CryptoFail)?;

Ok(())
}

fn make_nonce(iv: &[u8], counter: u64) -> [u8; aead::NONCE_LEN] {
let mut nonce = [0; aead::NONCE_LEN];
nonce.copy_from_slice(iv);

// XOR the last bytes of the IV with the counter. This is equivalent to
// left-padding the counter with zero bytes.
for (a, b) in nonce[4..].iter_mut().zip(counter.to_be_bytes().iter()) {
*a ^= b;
}

nonce
}

// The ring HKDF expand() API does not accept an arbitrary output length, so we
// need to hide the `usize` length as part of a type that implements the trait
// `ring::hkdf::KeyType` in order to trick ring into accepting it.
struct ArbitraryOutputLen(usize);

impl hkdf::KeyType for ArbitraryOutputLen {
fn len(&self) -> usize {
self.0
}
}
Loading
Loading