>> python3 run_regression.py --help
usage: run_regression.py [-h] [--num_inducing NUM_INDUCING]
[--minibatch_size MINIBATCH_SIZE]
[--iterations ITERATIONS] [--n_layers N_LAYERS]
--dataset DATASET [--fold FOLD]
[--prior_type {determinantal,normal,strauss,uniform}]
[--model {bsgp}]
[--num_posterior_samples NUM_POSTERIOR_SAMPLES]
[--step_size STEP_SIZE]
Run regression experiment
optional arguments:
-h, --help show this help message and exit
--num_inducing NUM_INDUCING
--minibatch_size MINIBATCH_SIZE
--iterations ITERATIONS
--n_layers N_LAYERS
--dataset DATASET
--fold FOLD
--prior_type {determinantal,normal,strauss,uniform}
--model {bsgp}
--num_posterior_samples NUM_POSTERIOR_SAMPLES
--step_size STEP_SIZE
To reproduce figures, plots and results make sure you have the correct requirements.
Rossi, S., Heinonen, M., Bonilla, E., Shen, Z. & Filippone, M.. (2021). Sparse Gaussian Processes Revisited: Bayesian Approaches to Inducing-Variable Approximations. Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 130:1837-1845