Skip to content

TarCA is an R package used for inferring the number of progenitors of the focal cell population based on the cell phylogeny.

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

shadowdeng1994/TarCA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TarCA

The method, termed as targeting coalescent analysis (TCA), computes for all cells of a tissue the average coalescent rate at the monophyletic clades of the target tissue, the inverse of which then measures the progenitor number of the tissue. Any predefined population could be investigated with TCA, independent of pre-set markers.

* I recommend using TarCA.beta which could be of higher computational efficiency.

System requirement

  • Dependent packages: dplyr, tidyr, ape, castor, ggplot2, ggtree, phytools, stringr
  • Require R (>= 3.5.0).

Install

install.packages('devtools')
devtools::install_github('shadowdeng1994/TarCA')

Installation would finish in about one minute.

Quickstart

library("TarCA")
  • The following files are needed for TarCA.
  1. A tree file of class "phylo" with node labels.

((Cell_1,((Cell_2,Cell_3)Node_4,(Cell_4,Cell_5)Node_5)Node_3)Node_2,(((Cell_6,Cell_7)Node_8,(Cell_8,Cell_9)Node_9)Node_7,Cell_10)Node_6)Node_1;

  1. A dataframe with columns TipLabel and TipAnn, representing tip labels on the tree file and corresponding cell annotations.
TipLabel TipAnn
Cell_1 O1
Cell_2 O1
Cell_3 O1
Cell_4 O2
Cell_5 O2
Cell_6 O2
Cell_7 O3
Cell_8 O3
Cell_9 O3
Cell_10 O3
  1. (optional) A path to output the result (e.g. NpResult.RData).
  • Effective number of progenitor can be inferred with Np_Estimator.
  • Modified algorithm for detection of lineage specific expression upregulation (LEU) can be called with LEU_Estimator.

Estimate Np with exemplar dataset.

  • Load exemplar dataset.
load(system.file("Exemplar","Exemplar_TCA.RData",package = "TarCA"))
tmp.tree <- ExemplarData_1$Tree
tmp.ann <- ExemplarData_1$Ann
  • Inferring Np with Np_Estimator.
tmp.result <- Np_Estimator(
  Tree = tmp.tree,
  Ann = tmp.ann,
  Fileout = NULL,
  ReturnNp = TRUE
)

**** 1. Check input data.

**** 2. Get treedata file.

**** 3. Get node2tip file.

**** 4. Get pureNode file.

**** 5. Get pureNode2organ file.

**** 6. Get CladeSizeDetail file.

**** 7. Get Np file.

  • Then the Np estimation are stoarged in tmp.result[["EffN"]].
TipAnn CladeSize Total EffN
O0 1 (1), 2 (2) 5 5
O1 1 (6), 2 (11), 3 (1), 5 (1) 36 26.2
O2 1 (35), 2 (17), 3 (4), 4 (2), 8 (1) 97 67.5
O3 1 (66), 2 (38), 3 (11), 4 (4), 5 (2), 7 (1) 208 158
O4 1 (50), 2 (24), 3 (6), 4 (3), 5 (1) 133 125
O5 1 (71), 2 (38), 3 (13), 4 (5) 206 197
O6 1 (32), 2 (23), 3 (9), 7 (1) 112 87.5
O7 1 (50), 2 (37), 3 (10), 4 (3), 6 (1) 172 147
O8 1 (5), 2 (3) 11 18.3
O9 1 (12), 2 (1), 3 (2) 20 27.1

This process is estimated to be completed in about 30 seconds.

Detect LEU with exemplar dataset.

  • Load exemplar dataset.
load(system.file("Exemplar","Exemplar_LEU.RData",package = "TarCA"))
tmp.tree <- ExemplarData_2$Tree
tmp.ann <- ExemplarData_2$Ann
  • Inferring Np with LEU_Estimator.
tmp.result <- LEU_Estimator(
  Tree = tmp.tree,
  Ann = tmp.ann,
  Fileout = NULL,
  ReturnNp = TRUE
)

**** 1. Check input data.

**** 2. Get BiasNode file.

**** 3. Filter BiasNode.

**** 4. Plot BiasNode.

**** 5. Get pureNode file.

**** 6. Get pureNode2organ file.

**** 7. Get CladeSizeDetail file.

**** 8. Get Np file.

  • Then the Np estimation for subpopulation with expression upregulation are stoarged in tmp.result[["EffN"]].
TipAnn CladeSize Total EffN
FALSE 1 (482) 482 Inf
TRUE 1 (23), 2 (5), 4 (2) 41 48.2
  • Additionally, you can visualize the LEU on the phylogeny with tmp.result[["BiasFig"]].

This process is estimated to be completed in about 30 seconds.

Contributing

Contributors

Shanjun Deng, [email protected].

Citations

When using TarCA please cite:

  • Deng S, Gong H, Zhang D, et al. A statistical method for quantifying progenitor cells reveals incipient cell fate commitments[J]. Nature Methods, 2024: 1-12.

About

TarCA is an R package used for inferring the number of progenitors of the focal cell population based on the cell phylogeny.

Topics

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Packages

No packages published

Languages