Skip to content

Commit

Permalink
word lib: fix broken style introduced from AFP
Browse files Browse the repository at this point in the history
Signed-off-by: Gerwin Klein <[email protected]>
  • Loading branch information
lsf37 committed Oct 6, 2023
1 parent 0d984f3 commit ad24d95
Showing 1 changed file with 11 additions and 19 deletions.
30 changes: 11 additions & 19 deletions lib/Word_Lib/Word_Lemmas.thy
Original file line number Diff line number Diff line change
Expand Up @@ -496,7 +496,7 @@ next
ultimately show ?thesis
using \<open>y < LENGTH('a)\<close>
by (auto simp add: drop_bit_eq_div word_less_nat_alt unat_div unat_word_ariths
shiftr_def shiftl_def)
shiftr_def shiftl_def)
next
case False
with \<open>y < n\<close> have *: \<open>unat x \<noteq> 2 ^ n div 2 ^ y\<close>
Expand All @@ -508,8 +508,9 @@ next
also have \<open>\<dots> \<longleftrightarrow> unat x < 2 ^ n div 2 ^ y\<close>
using * by (simp add: less_le)
finally show ?thesis
using that \<open>x \<noteq> 0\<close> by (simp flip: push_bit_eq_mult drop_bit_eq_div
add: shiftr_def shiftl_def unat_drop_bit_eq word_less_iff_unsigned [where ?'a = nat])
using that \<open>x \<noteq> 0\<close>
by (simp flip: push_bit_eq_mult drop_bit_eq_div
add: shiftr_def shiftl_def unat_drop_bit_eq word_less_iff_unsigned [where ?'a = nat])
qed
qed
qed
Expand Down Expand Up @@ -716,7 +717,8 @@ lemma word_and_notzeroD:
lemma shiftr_le_0:
"unat (w::'a::len word) < 2 ^ n \<Longrightarrow> w >> n = (0::'a::len word)"
by (auto simp add: take_bit_word_eq_self_iff word_less_nat_alt shiftr_def
simp flip: take_bit_eq_self_iff_drop_bit_eq_0 intro: ccontr)
simp flip: take_bit_eq_self_iff_drop_bit_eq_0
intro: ccontr)

lemma of_nat_shiftl:
"(of_nat x << n) = (of_nat (x * 2 ^ n) :: ('a::len) word)"
Expand Down Expand Up @@ -1466,12 +1468,9 @@ lemma mask_shift_sum:
"\<lbrakk> a \<ge> b; unat n = unat (p AND mask b) \<rbrakk>
\<Longrightarrow> (p AND NOT(mask a)) + (p AND mask a >> b) * (1 << b) + n = (p :: 'a :: len word)"
apply (simp add: shiftl_def shiftr_def flip: push_bit_eq_mult take_bit_eq_mask word_unat_eq_iff)
apply (subst disjunctive_add)
apply (auto simp add: bit_simps)
apply (subst disjunctive_add)
apply (auto simp add: bit_simps)
apply (rule bit_word_eqI)
apply (auto simp add: bit_simps)
apply (subst disjunctive_add, fastforce simp: bit_simps)+
apply (rule bit_word_eqI)
apply (fastforce simp: bit_simps)[1]
done

lemma is_up_compose:
Expand Down Expand Up @@ -1586,10 +1585,7 @@ next
apply (rule impI)
apply (subst bit_eq_iff)
apply (simp add: bit_take_bit_iff bit_signed_take_bit_iff min_def)
apply (auto simp add: Suc_le_eq)
using less_imp_le_nat apply blast
using less_imp_le_nat apply blast
done
by (auto simp add: Suc_le_eq) (meson dual_order.strict_iff_not)+
qed

lemma scast_ucast_mask_compare:
Expand Down Expand Up @@ -1823,11 +1819,7 @@ proof (rule classical)
apply (insert sdiv_int_range [where a="sint a" and b="sint b"])[1]
apply (clarsimp simp: word_size)
apply (insert sdiv_int_range [where a="sint a" and b="sint b"])[1]
apply auto
apply (cases \<open>size a\<close>)
apply simp_all
apply (smt (z3) One_nat_def diff_Suc_1 signed_word_eqI sint_int_min sint_range_size wsst_TYs(3))
done
by (smt (verit, best) One_nat_def signed_word_eqI sint_greater_eq sint_int_min sint_less wsst_TYs(3))

have result_range_simple: "(sint a sdiv sint b \<in> ?range) \<Longrightarrow> ?thesis"
apply (insert sdiv_int_range [where a="sint a" and b="sint b"])
Expand Down

0 comments on commit ad24d95

Please sign in to comment.