Skip to content

rxn4chemistry/paragraph2actions

Repository files navigation

Extraction of actions from experimental procedures

This repository contains the code for Automated Extraction of Chemical Synthesis Actions from Experimental Procedures.

Overview

This repository contains code to extract actions from experimental procedures. In particular, it contains the following:

  • Definition and handling of synthesis actions
  • Code for data augmentation
  • Training and usage of a transformer-based model

A trained model can be freely used online at https://rxn.res.ibm.com or with the Python wrapper available here.

Links:

System Requirements

Hardware requirements

The code can run on any standard computer. It is recommended to run the training scripts in a GPU-enabled environment.

Software requirements

OS Requirements

This package is supported for macOS and Linux. The package has been tested on the following systems:

  • macOS: Catalina (10.15.4)
  • Linux: Ubuntu 16.04.3

Python

A Python version of 3.6 or greater is recommended. The Python package dependencies are listed in setup.cfg.

Installation guide

To use the package, we recommended to create a dedicated conda or venv environment:

# Conda
conda create -n p2a python=3.8
conda activate p2a

# venv
python3.8 -m venv myenv
source myenv/bin/activate

The package can then be installed from Pypi:

pip install paragraph2actions

For local development, the package can be installed with:

pip install -e .[dev]

The installation should not take more than a few minutes.

Training the transformer model for action extraction

This section explains how to train the translation model for action extraction.

General setup

For simplicity, set the following environment variable:

export DATA_DIR="$(pwd)/test_data"

DATA_DIR can be changed to any other location containing the data to train on. We assume that DATA_DIR contains the following files:

src-test.txt    src-train.txt   src-valid.txt   tgt-test.txt    tgt-train.txt   tgt-valid.txt

Subword tokenization

We train a SentencePiece tokenizer on the train split:

export VOCAB_SIZE=200  # for the production model, a size of 16000 is used
paragraph2actions-create-tokenizer -i $DATA_DIR/src-train.txt -i $DATA_DIR/tgt-train.txt -m $DATA_DIR/sp_model -v $VOCAB_SIZE

We then tokenize the data:

paragraph2actions-tokenize -m $DATA_DIR/sp_model.model -i $DATA_DIR/src-train.txt -o $DATA_DIR/tok-src-train.txt
paragraph2actions-tokenize -m $DATA_DIR/sp_model.model -i $DATA_DIR/src-valid.txt -o $DATA_DIR/tok-src-valid.txt
paragraph2actions-tokenize -m $DATA_DIR/sp_model.model -i $DATA_DIR/tgt-train.txt -o $DATA_DIR/tok-tgt-train.txt
paragraph2actions-tokenize -m $DATA_DIR/sp_model.model -i $DATA_DIR/tgt-valid.txt -o $DATA_DIR/tok-tgt-valid.txt

Training

Convert the data to the format required by OpenNMT:

onmt_preprocess \
  -train_src $DATA_DIR/tok-src-train.txt -train_tgt $DATA_DIR/tok-tgt-train.txt \
  -valid_src $DATA_DIR/tok-src-valid.txt -valid_tgt $DATA_DIR/tok-tgt-valid.txt \
  -save_data $DATA_DIR/preprocessed -src_seq_length 300 -tgt_seq_length 300 \
  -src_vocab_size $VOCAB_SIZE -tgt_vocab_size $VOCAB_SIZE -share_vocab

To then train the transformer model with OpenNMT:

onmt_train \
  -data $DATA_DIR/preprocessed  -save_model  $DATA_DIR/models/model  \
  -seed 42 -save_checkpoint_steps 10000 -keep_checkpoint 5 \
  -train_steps 500000 -param_init 0  -param_init_glorot -max_generator_batches 32 \
  -batch_size 4096 -batch_type tokens -normalization tokens -max_grad_norm 0  -accum_count 4 \
  -optim adam -adam_beta1 0.9 -adam_beta2 0.998 -decay_method noam -warmup_steps 8000  \
  -learning_rate 2 -label_smoothing 0.0 -report_every 1000  -valid_batch_size 32 \
  -layers 4 -rnn_size 256 -word_vec_size 256 -encoder_type transformer -decoder_type transformer \
  -dropout 0.1 -position_encoding -share_embeddings -valid_steps 20000 \
  -global_attention general -global_attention_function softmax -self_attn_type scaled-dot \
  -heads 8 -transformer_ff 2048

Training the model can take up to a few days in a GPU-enabled environment. For testing purposes in a CPU-only environment, the same command with -save_checkpoint_steps 10 and -train_steps 10 will take only a few minutes.

Finetuning

For finetuning, we first generate appropriate data in OpenNMT format by following the steps described above. We assume that the preprocessed data is then available as $DATA_DIR/preprocessed_finetuning

We then use the same training command with slightly different parameters

onmt_train \
  -data $DATA_DIR/preprocessed_finetuning  \
  -train_from $DATA_DIR/models/model_step_500000.pt \
  -save_model  $DATA_DIR/models/model  \
  -seed 42 -save_checkpoint_steps 1000 -keep_checkpoint 40 \
  -train_steps 530000 -param_init 0  -param_init_glorot -max_generator_batches 32 \
  -batch_size 4096 -batch_type tokens -normalization tokens -max_grad_norm 0  -accum_count 4 \
  -optim adam -adam_beta1 0.9 -adam_beta2 0.998 -decay_method noam -warmup_steps 8000  \
  -learning_rate 2 -label_smoothing 0.0 -report_every 200  -valid_batch_size 512 \
  -layers 4 -rnn_size 256 -word_vec_size 256 -encoder_type transformer -decoder_type transformer \
  -dropout 0.1 -position_encoding -share_embeddings -valid_steps 200 \
  -global_attention general -global_attention_function softmax -self_attn_type scaled-dot \
  -heads 8 -transformer_ff 2048

Extraction of actions with the transformer model

Experimental procedure sentences can then be translated to action sequences with the following:

# Update the path to the OpenNMT model as required
export MODEL="$DATA_DIR/models/model_step_520000.pt"

paragraph2actions-translate -t $MODEL -p $DATA_DIR/sp_model.model -s $DATA_DIR/src-test.txt -o $DATA_DIR/pred.txt

Evaluation

To print the metrics on the predictions, the following command can be used:

paragraph2actions-calculate-metrics -g $DATA_DIR/tgt-test.txt -p $DATA_DIR/pred.txt

Data augmentation

The following code illustrate how to augment the data for existing sentences and associated action sequences.

from paragraph2actions.augmentation.compound_name_augmenter import CompoundNameAugmenter
from paragraph2actions.augmentation.compound_quantity_augmenter import CompoundQuantityAugmenter
from paragraph2actions.augmentation.duration_augmenter import DurationAugmenter
from paragraph2actions.augmentation.temperature_augmenter import TemperatureAugmenter
from paragraph2actions.misc import load_samples, TextWithActions
from paragraph2actions.readable_converter import ReadableConverter

converter = ReadableConverter()
samples = load_samples('test_data/src-test.txt', 'test_data/tgt-test.txt', converter)

cna = CompoundNameAugmenter(0.5, ['NaH', 'hydrogen', 'C2H6', 'water'])
cqa = CompoundQuantityAugmenter(0.5, ['5.0 g', '8 mL', '3 mmol'])
da = DurationAugmenter(0.5, ['overnight', '15 minutes', '6 h'])
ta = TemperatureAugmenter(0.5, ['room temperature', '30 °C', '-5 °C'])


def augment(sample: TextWithActions) -> TextWithActions:
    sample = cna.augment(sample)
    sample = cqa.augment(sample)
    sample = da.augment(sample)
    sample = ta.augment(sample)
    return sample


for sample in samples:
    print('Original:')
    print(sample.text)
    print(converter.actions_to_string(sample.actions))
    for _ in range(5):
        augmented = augment(sample)
        print('  Augmented:')
        print(' ', augmented.text)
        print(' ', converter.actions_to_string(augmented.actions))
    print()

This script can produce the following output:

Original:
The reaction mixture is allowed to warm to room temperature and stirred overnight.
STIR for overnight at room temperature.
  Augmented:
  The reaction mixture is allowed to warm to -5 °C and stirred overnight.
  STIR for overnight at -5 °C.
  Augmented:
  The reaction mixture is allowed to warm to room temperature and stirred 15 minutes.
  STIR for 15 minutes at room temperature.
[...]

Action post-processing

The following code illustrate the postprocessing of actions.

from paragraph2actions.postprocessing.filter_postprocessor import FilterPostprocessor
from paragraph2actions.postprocessing.noaction_postprocessor import NoActionPostprocessor
from paragraph2actions.postprocessing.postprocessor_combiner import PostprocessorCombiner
from paragraph2actions.postprocessing.wait_postprocessor import WaitPostprocessor
from paragraph2actions.readable_converter import ReadableConverter

converter = ReadableConverter()
postprocessor = PostprocessorCombiner([
    FilterPostprocessor(),
    NoActionPostprocessor(),
    WaitPostprocessor(),
])

original_action_string = 'NOACTION; STIR at 5 °C; WAIT for 10 minutes; FILTER; DRYSOLUTION over sodium sulfate.'
original_actions = converter.string_to_actions(original_action_string)

postprocessed_actions = postprocessor.postprocess(original_actions)
postprocessed_action_string = converter.actions_to_string(postprocessed_actions)

print('Original actions     :', original_action_string)
print('Postprocessed actions:', postprocessed_action_string)

The output of this code will be the following:

Original actions     : NOACTION; STIR at 5 °C; WAIT for 10 minutes; FILTER; DRYSOLUTION over sodium sulfate.
Postprocessed actions: STIR for 10 minutes at 5 °C; FILTER keep filtrate; DRYSOLUTION over sodium sulfate.

About

Extraction of action sequences from experimental procedures

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages