-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit e925f99
Showing
131 changed files
with
18,107 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
50 changes: 50 additions & 0 deletions
50
_downloads/0953145e59ada4e8a11b742a56988ff4/02_model_definition_by_yaml_file.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
""" | ||
.. _second: | ||
Model Definition by Yaml file | ||
---------------------------------------------------- | ||
Phlower offers a way to define models and its order by yaml file. | ||
""" | ||
|
||
|
||
################################################################################################### | ||
# First of all, we would like to load sample yaml data. Please download sample sample yaml. | ||
# `data.yml | ||
# <https://github.com/ricosjp/phlower/tutorials/basic_usages/sample_data/model/model.yml>`_ | ||
# | ||
# we construct PhlowerSetting object from yaml file. | ||
|
||
from phlower.settings import PhlowerSetting | ||
|
||
setting = PhlowerSetting.read_yaml("sample_data/model/model.yml") | ||
|
||
|
||
################################################################################################### | ||
# Order of models must be DAG (Directed Acyclic Graph). | ||
# To check such conditions, we call `resolve` function. | ||
|
||
setting.model.network.resolve(is_first=True) | ||
|
||
|
||
################################################################################################### | ||
# In phlower, networks are packed into PhlowerGroupModule. | ||
# PhlowerGroupModule is directly created from model setting. | ||
# | ||
# `draw` function generate a file following to mermaid format. | ||
|
||
from phlower.nn import PhlowerGroupModule | ||
|
||
model = PhlowerGroupModule.from_setting(setting.model.network) | ||
model.draw("images") | ||
|
||
|
||
################################################################################################### | ||
# The output mermaid file is shown below. | ||
# | ||
# .. mermaid:: ../../tutorials/basic_usages/images/SAMPLE_MODEL.mmd | ||
# | ||
# According to this image, we can understand details of each model and data flow. | ||
# |
122 changes: 122 additions & 0 deletions
122
...4c6068b55102daf56ad0a3da6baf3/03_high_level_api_for_scaling_training_and_prediction.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,122 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"\n\n\n# High Level API for scaling, training and prediction\n\nIn this section, we will use high level API for performing machine learning process.\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"At First, we will prepare dummy data.\nThese dummy data corresponds to feature values extracted from simultion data.\n\n\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import pathlib\nimport random\nimport shutil\n\nimport numpy as np\nimport scipy.sparse as sp\n\n\ndef prepare_sample_interim_files():\n np.random.seed(0)\n random.seed(0)\n\n output_directory = pathlib.Path(\"out\")\n if output_directory.exists():\n shutil.rmtree(output_directory)\n\n base_interim_dir = output_directory / \"interim\"\n base_interim_dir.mkdir(parents=True)\n\n n_cases = 5\n dtype = np.float32\n for i in range(n_cases):\n n_nodes = 100 * (i + 1)\n interim_dir = base_interim_dir / f\"case_{i}\"\n interim_dir.mkdir()\n\n nodal_initial_u = np.random.rand(n_nodes, 3, 1)\n np.save(\n interim_dir / \"nodal_initial_u.npy\",\n nodal_initial_u.astype(dtype),\n )\n\n # nodal_last_u = np.random.rand(n_nodes, 3, 1)\n np.save(interim_dir / \"nodal_last_u.npy\", nodal_initial_u.astype(dtype))\n\n sparse_array_names = [\n \"nodal_nadj\",\n \"nodal_x_grad_hop1\",\n \"nodal_y_grad_hop1\",\n \"nodal_z_grad_hop1\",\n ]\n rng = np.random.default_rng()\n for name in sparse_array_names:\n arr = sp.random(n_nodes, n_nodes, density=0.1, random_state=rng)\n sp.save_npz(interim_dir / name, arr.tocoo().astype(dtype))\n\n (interim_dir / \"converted\").touch()\n\n\nprepare_sample_interim_files()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Setting file for scaling and training can be downloaded from\n[data.yml](https://github.com/ricosjp/phlower/tutorials/basic_usages/sample_data/e2e/setting.yml)\nwe perform scaling process for data above.\n\n\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"from phlower.services.preprocessing import PhlowerScalingService\nfrom phlower.settings import PhlowerSetting\n\nsetting = PhlowerSetting.read_yaml(\"sample_data/e2e/setting.yml\")\n\nscaler = PhlowerScalingService.from_setting(setting)\nscaler.fit_transform_all(\n interim_data_directories=[\n pathlib.Path(\"out/interim/case_0\"),\n pathlib.Path(\"out/interim/case_1\"),\n pathlib.Path(\"out/interim/case_2\"),\n pathlib.Path(\"out/interim/case_3\"),\n pathlib.Path(\"out/interim/case_4\"),\n ],\n output_base_directory=pathlib.Path(\"out/preprocessed\"),\n)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Next, we perform training by using preprocessed data.\n\n\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"from phlower.services.trainer import PhlowerTrainer\n\ntrainer = PhlowerTrainer.from_setting(setting)\n\nloss = trainer.train(\n train_directories=[\n pathlib.Path(\"out/preprocessed/case_0\"),\n pathlib.Path(\"out/preprocessed/case_1\"),\n pathlib.Path(\"out/preprocessed/case_2\"),\n ],\n validation_directories=[\n pathlib.Path(\"out/preprocessed/case_3\"),\n pathlib.Path(\"out/preprocessed/case_4\"),\n ],\n output_directory=pathlib.Path(\"out/model\"),\n)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"``train`` function returns PhlowerTensor object which corresponds to last validation loss.\nLet's call print it.\n\nWe can find that loss object has physical dimension and it is L^2 T^(-2)\nbecause we use MSE (Mean Squared Error) as a loss function.\n\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"print(loss)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Finally, we perform predicion by using pretrained model.\nSetting file for prediction can be downloaded from\n[data.yml](https://github.com/ricosjp/phlower/tutorials/basic_usages/sample_data/e2e/predict.yml)\n\nIt is found that physical dimension is also considered properly.\n\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"from phlower.services.predictor import PhlowerPredictor\n\nsetting = PhlowerSetting.read_yaml(\"sample_data/e2e/predict.yml\")\n\npredictor = PhlowerPredictor(\n model_directory=pathlib.Path(\"out/model\"),\n predict_setting=setting.prediction,\n)\n\npreprocessed_directories = [pathlib.Path(\"out/preprocessed/case_3\")]\n\nfor result in predictor.predict(preprocessed_directories):\n for k in result.keys():\n print(f\"{k}: {result[k].dimension}\")" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.14" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 0 | ||
} |
145 changes: 145 additions & 0 deletions
145
...15af1fc81b615371e46cf85a99e84a46/03_high_level_api_for_scaling_training_and_prediction.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,145 @@ | ||
""" | ||
.. _third: | ||
High Level API for scaling, training and prediction | ||
---------------------------------------------------- | ||
In this section, we will use high level API for performing machine learning process. | ||
""" | ||
|
||
################################################################################################### | ||
# At First, we will prepare dummy data. | ||
# These dummy data corresponds to feature values extracted from simultion data. | ||
# | ||
|
||
import pathlib | ||
import random | ||
import shutil | ||
|
||
import numpy as np | ||
import scipy.sparse as sp | ||
|
||
|
||
def prepare_sample_interim_files(): | ||
np.random.seed(0) | ||
random.seed(0) | ||
|
||
output_directory = pathlib.Path("out") | ||
if output_directory.exists(): | ||
shutil.rmtree(output_directory) | ||
|
||
base_interim_dir = output_directory / "interim" | ||
base_interim_dir.mkdir(parents=True) | ||
|
||
n_cases = 5 | ||
dtype = np.float32 | ||
for i in range(n_cases): | ||
n_nodes = 100 * (i + 1) | ||
interim_dir = base_interim_dir / f"case_{i}" | ||
interim_dir.mkdir() | ||
|
||
nodal_initial_u = np.random.rand(n_nodes, 3, 1) | ||
np.save( | ||
interim_dir / "nodal_initial_u.npy", | ||
nodal_initial_u.astype(dtype), | ||
) | ||
|
||
# nodal_last_u = np.random.rand(n_nodes, 3, 1) | ||
np.save(interim_dir / "nodal_last_u.npy", nodal_initial_u.astype(dtype)) | ||
|
||
sparse_array_names = [ | ||
"nodal_nadj", | ||
"nodal_x_grad_hop1", | ||
"nodal_y_grad_hop1", | ||
"nodal_z_grad_hop1", | ||
] | ||
rng = np.random.default_rng() | ||
for name in sparse_array_names: | ||
arr = sp.random(n_nodes, n_nodes, density=0.1, random_state=rng) | ||
sp.save_npz(interim_dir / name, arr.tocoo().astype(dtype)) | ||
|
||
(interim_dir / "converted").touch() | ||
|
||
|
||
prepare_sample_interim_files() | ||
|
||
################################################################################################### | ||
# Setting file for scaling and training can be downloaded from | ||
# `data.yml | ||
# <https://github.com/ricosjp/phlower/tutorials/basic_usages/sample_data/e2e/setting.yml>`_ | ||
# we perform scaling process for data above. | ||
# | ||
|
||
from phlower.services.preprocessing import PhlowerScalingService | ||
from phlower.settings import PhlowerSetting | ||
|
||
setting = PhlowerSetting.read_yaml("sample_data/e2e/setting.yml") | ||
|
||
scaler = PhlowerScalingService.from_setting(setting) | ||
scaler.fit_transform_all( | ||
interim_data_directories=[ | ||
pathlib.Path("out/interim/case_0"), | ||
pathlib.Path("out/interim/case_1"), | ||
pathlib.Path("out/interim/case_2"), | ||
pathlib.Path("out/interim/case_3"), | ||
pathlib.Path("out/interim/case_4"), | ||
], | ||
output_base_directory=pathlib.Path("out/preprocessed"), | ||
) | ||
|
||
|
||
################################################################################################### | ||
# Next, we perform training by using preprocessed data. | ||
# | ||
|
||
from phlower.services.trainer import PhlowerTrainer | ||
|
||
trainer = PhlowerTrainer.from_setting(setting) | ||
|
||
loss = trainer.train( | ||
train_directories=[ | ||
pathlib.Path("out/preprocessed/case_0"), | ||
pathlib.Path("out/preprocessed/case_1"), | ||
pathlib.Path("out/preprocessed/case_2"), | ||
], | ||
validation_directories=[ | ||
pathlib.Path("out/preprocessed/case_3"), | ||
pathlib.Path("out/preprocessed/case_4"), | ||
], | ||
output_directory=pathlib.Path("out/model"), | ||
) | ||
|
||
################################################################################################### | ||
# ``train`` function returns PhlowerTensor object which corresponds to last validation loss. | ||
# Let's call print it. | ||
# | ||
# We can find that loss object has physical dimension and it is L^2 T^(-2) | ||
# because we use MSE (Mean Squared Error) as a loss function. | ||
|
||
print(loss) | ||
|
||
|
||
################################################################################################### | ||
# Finally, we perform predicion by using pretrained model. | ||
# Setting file for prediction can be downloaded from | ||
# `data.yml | ||
# <https://github.com/ricosjp/phlower/tutorials/basic_usages/sample_data/e2e/predict.yml>`_ | ||
# | ||
# It is found that physical dimension is also considered properly. | ||
|
||
from phlower.services.predictor import PhlowerPredictor | ||
|
||
setting = PhlowerSetting.read_yaml("sample_data/e2e/predict.yml") | ||
|
||
predictor = PhlowerPredictor( | ||
model_directory=pathlib.Path("out/model"), | ||
predict_setting=setting.prediction, | ||
) | ||
|
||
preprocessed_directories = [pathlib.Path("out/preprocessed/case_3")] | ||
|
||
for result in predictor.predict(preprocessed_directories): | ||
for k in result.keys(): | ||
print(f"{k}: {result[k].dimension}") |
Oops, something went wrong.