TorchBench V3 nightly (A100) #284
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: TorchBench V3 nightly (A100) | |
on: | |
workflow_dispatch: | |
schedule: | |
- cron: '0 16 * * *' # run at 4 PM UTC | |
jobs: | |
run-benchmark: | |
environment: docker-s3-upload | |
env: | |
BASE_CONDA_ENV: "torchbench" | |
CONDA_ENV: "torchbench-v3-nightly" | |
PLATFORM_NAME: "gcp_a100" | |
SETUP_SCRIPT: "/workspace/setup_instance.sh" | |
TORCHBENCH_USERBENCHMARK_SCRIBE_GRAPHQL_ACCESS_TOKEN: ${{ secrets.TORCHBENCH_USERBENCHMARK_SCRIBE_GRAPHQL_ACCESS_TOKEN }} | |
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY_ID }} | |
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_ACCESS_KEY }} | |
IS_GHA: 1 | |
BUILD_ENVIRONMENT: benchmark-nightly | |
if: ${{ github.repository_owner == 'pytorch' }} | |
runs-on: [self-hosted, a100-runner] | |
steps: | |
- name: Checkout TorchBench v3.0 branch | |
uses: actions/checkout@v3 | |
with: | |
ref: v3.0 | |
path: benchmark | |
- name: Tune Nvidia GPU | |
run: | | |
sudo nvidia-smi -pm 1 | |
sudo nvidia-smi -ac 1215,1410 | |
nvidia-smi | |
- name: Check PyTorch nightly if scheduled | |
if: ${{ github.event_name == 'schedule' }} | |
run: | | |
CONDA_ENV=${BASE_CONDA_ENV} . "${SETUP_SCRIPT}" | |
pushd benchmark | |
TODAY_STR=$(date +'%Y%m%d') | |
python utils/cuda_utils.py --check-torch-nightly-version --force-date ${TODAY_STR} | |
- name: Clone and setup conda env | |
run: | | |
CONDA_ENV=${BASE_CONDA_ENV} . "${SETUP_SCRIPT}" | |
conda create --name "${CONDA_ENV}" --clone "${BASE_CONDA_ENV}" | |
- name: Install TorchBench | |
run: | | |
set -x | |
. "${SETUP_SCRIPT}" | |
pushd benchmark | |
python install.py | |
- name: Run the torch-nightly userbenchmark | |
run: | | |
. "${SETUP_SCRIPT}" | |
# remove old results | |
if [ -d benchmark-output ]; then rm -Rf benchmark-output; fi | |
pushd benchmark | |
if [ -d .userbenchmark ]; then rm -Rf .userbenchmark; fi | |
python run_benchmark.py torch-nightly -c v3-cuda-tests.yaml | |
cp -r ./.userbenchmark/torch-nightly ../benchmark-output | |
- name: Detect potential regressions | |
continue-on-error: true | |
run: | | |
. "${SETUP_SCRIPT}" | |
pushd benchmark | |
RESULTS=($(find ${PWD}/../benchmark-output -name "metrics-*.json" -maxdepth 2 | sort -r)) | |
# TODO: the following assumes only one metrics-*.json is found. It will keep | |
# overwriting gh-issue.md if multiple are found. | |
for r in ${RESULTS[@]}; do | |
python regression_detector.py --platform "${PLATFORM_NAME}" --treatment "${r}" --owner @xuzhao9 \ | |
--gh-issue-path gh-issue.md --errors-path errors.txt | |
done | |
rm -r ../benchmark-output || true | |
cp -r ./.userbenchmark/torch-nightly ../benchmark-output | |
- name: Create the github issue | |
continue-on-error: true | |
if: env.TORCHBENCH_REGRESSION_DETECTED | |
uses: peter-evans/create-issue-from-file@v4 | |
with: | |
title: V3 Performance Signal Detected by TorchBench Userbenchmark "torch-nightly" on ${{ env.TORCHBENCH_REGRESSION_DETECTED }} | |
content-filepath: ./benchmark/gh-issue.md | |
labels: | | |
torchbench-perf-report | |
- name: Copy artifact and upload to scribe and Amazon S3 | |
run: | | |
. "${SETUP_SCRIPT}" | |
pushd benchmark | |
LATEST_RESULT=$(find ../benchmark-output/ -name "metrics-*.json" | sort -r | head -1) | |
echo "Benchmark result file: ${LATEST_RESULT}" | |
# Upload the result json to Scribe | |
python ./scripts/userbenchmark/upload_scribe.py --userbenchmark_json "${LATEST_RESULT}" --userbenchmark_platform "${PLATFORM_NAME}" | |
# Upload the result json to Amazon S3 | |
python ./scripts/userbenchmark/upload_s3.py --upload-file "${LATEST_RESULT}" --userbenchmark_platform "${PLATFORM_NAME}" | |
- name: Copy regression results to Amazon S3 | |
if: env.TORCHBENCH_REGRESSION_DETECTED | |
run: | | |
. "${SETUP_SCRIPT}" | |
pushd benchmark | |
LATEST_REGRESSION_RESULT=$(find ../benchmark-output/ -name "regression-*.yaml" | sort -r | head -1) | |
# Upload the regression json to Amazon S3 | |
python ./scripts/userbenchmark/upload_s3.py --upload-file "${LATEST_REGRESSION_RESULT}" --userbenchmark_platform "${PLATFORM_NAME}" | |
- name: Upload result to GH Actions Artifact | |
uses: actions/upload-artifact@v3 | |
with: | |
name: TorchBench V3 result | |
path: benchmark-output/ | |
- name: Clean up Conda env | |
if: always() | |
run: | | |
. "${SETUP_SCRIPT}" | |
conda deactivate && conda deactivate | |
conda remove -n "${CONDA_ENV}" --all |