-
-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
adds a quick study to test NF robustness to CST noise.
- Loading branch information
1 parent
46cda40
commit 6cdbdfc
Showing
2 changed files
with
4,373 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,114 @@ | ||
import aerosandbox as asb | ||
import aerosandbox.numpy as np | ||
import neuralfoil as nf | ||
|
||
af = asb.KulfanAirfoil("naca0012") | ||
|
||
typical_weight_magnitude = np.median( | ||
np.concatenate([np.abs(af.lower_weights), np.abs(af.upper_weights)]) | ||
) # 0.1487 | ||
|
||
wiggle_basis_vector = (-1) ** np.arange(len(af.lower_weights)) # [1, -1, 1, -1, ...] | ||
|
||
|
||
@np.vectorize | ||
def get_airfoil_with_wiggly_noise(relative_noise: float) -> asb.KulfanAirfoil: | ||
noise = relative_noise * typical_weight_magnitude | ||
return asb.KulfanAirfoil( | ||
name=f"{af.name} + Wiggly Noise of {relative_noise * .2:%}", | ||
lower_weights=af.lower_weights + noise * wiggle_basis_vector, | ||
upper_weights=af.upper_weights + noise * wiggle_basis_vector, | ||
leading_edge_weight=af.leading_edge_weight, | ||
TE_thickness=af.TE_thickness, | ||
) | ||
|
||
|
||
relative_noises = np.linspace(0, 1, 21) | ||
wiggly_airfoils = get_airfoil_with_wiggly_noise(relative_noises) | ||
nf_aeros = [waf.get_aero_from_neuralfoil(alpha=5, Re=1e6) for waf in wiggly_airfoils] | ||
xf_aeros = [ | ||
asb.XFoil( | ||
airfoil=waf, | ||
Re=1e6, | ||
mach=0, | ||
).alpha(5) | ||
for waf in wiggly_airfoils | ||
] | ||
|
||
### Below is just plotting code | ||
|
||
import matplotlib.pyplot as plt | ||
import aerosandbox.tools.pretty_plots as p | ||
|
||
fig, ax = plt.subplots(2, 1) | ||
|
||
ax[0].plot(relative_noises, [aero["CD"] for aero in nf_aeros], label=f"NeuralFoil") | ||
ax[0].plot(relative_noises, [aero["CD"] for aero in xf_aeros], label=f"XFoil") | ||
ax[0].set_ylabel("$C_D$") | ||
ax[0].legend() | ||
|
||
ax[1].plot( | ||
relative_noises, | ||
[aero["analysis_confidence"] for aero in nf_aeros], | ||
) | ||
ax[1].set_ylabel("NeuralFoil\nAnalysis\nConfidence") | ||
|
||
for a in ax: | ||
a.xaxis.set_major_formatter(p.mpl.ticker.PercentFormatter(xmax=1)) | ||
|
||
plt.tight_layout(rect=[0.05, 0.1, 1, 0.93], h_pad=2) | ||
|
||
# Draw the airfoils | ||
for waf, noise in tuple(zip(wiggly_airfoils, relative_noises))[::5]: | ||
# Gets the figure-coordinates of the data point on ax[2] | ||
x, y = ax[1].transData.transform([noise, 0]) | ||
display_center = np.array( | ||
[ | ||
ax[1].transData.transform([noise, 0])[0], | ||
ax[1].transAxes.transform([0, 0])[1] - 120, | ||
] | ||
) | ||
display_size = np.array( | ||
[ | ||
fig.transFigure.transform([0.1, 0])[0] | ||
- fig.transFigure.transform([0, 0])[0], | ||
fig.transFigure.transform([0, 0.1])[1] | ||
- fig.transFigure.transform([0, 0])[1], | ||
] | ||
) | ||
display_lowerleft = display_center - display_size / 2 | ||
display_upperright = display_center + display_size / 2 | ||
fig_lowerleft = fig.transFigure.inverted().transform(display_lowerleft) | ||
fig_upperright = fig.transFigure.inverted().transform(display_upperright) | ||
|
||
afax = fig.add_axes( | ||
[ | ||
fig_lowerleft[0], | ||
fig_lowerleft[1], | ||
fig_upperright[0] - fig_lowerleft[0], | ||
fig_upperright[1] - fig_lowerleft[1], | ||
], | ||
zorder=10, | ||
) | ||
afax.fill( | ||
waf.x(), | ||
waf.y(), | ||
facecolor=(0, 0, 0, 0.2), | ||
linewidth=1, | ||
edgecolor=(0, 0, 0, 0.7), | ||
) | ||
afax.grid(False) | ||
afax.axis("off") | ||
|
||
afax.set_xlim(-0.05, 1.05) | ||
afax.set_ylim(-0.28, 0.28) | ||
afax.set_aspect("equal", adjustable="box") | ||
|
||
p.show_plot( | ||
title="Effect of CST Noise on NeuralFoil Performance", | ||
xlabel="Relative Noise Magnitude [%]", | ||
tight_layout=False, | ||
legend=False, | ||
show=True, | ||
savefig="performance_with_cst_noise.svg", | ||
) |
Oops, something went wrong.