Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support Ellipse Shape for InstSeg algo #4152

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -146,6 +146,8 @@ All notable changes to this project will be documented in this file.
(<https://github.com/openvinotoolkit/training_extensions/pull/4105>)
- Disable tiling classifier toggle in configurable parameters
(<https://github.com/openvinotoolkit/training_extensions/pull/4107>)
- Fix Ellipse shapes for Instance Segmentation
(<https://github.com/openvinotoolkit/training_extensions/pull/4152>)

## \[v2.1.0\]

Expand Down
50 changes: 39 additions & 11 deletions src/otx/core/data/dataset/instance_segmentation.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,13 +5,15 @@

from __future__ import annotations

import warnings
from collections import defaultdict
from functools import partial
from typing import Callable

import numpy as np
import torch
from datumaro import Bbox, Ellipse, Image, Polygon
from datumaro import Dataset as DmDataset
from datumaro import Image, Polygon
from torchvision import tv_tensors

from otx.core.data.entity.base import ImageInfo
Expand Down Expand Up @@ -42,23 +44,49 @@ def _get_item_impl(self, index: int) -> InstanceSegDataEntity | None:
ignored_labels: list[int] = []
img_data, img_shape, _ = self._get_img_data_and_shape(img)

anno_collection: dict[str, list] = defaultdict(list)
for anno in item.annotations:
anno_collection[anno.__class__.__name__].append(anno)

gt_bboxes, gt_labels, gt_masks, gt_polygons = [], [], [], []

for annotation in item.annotations:
if isinstance(annotation, Polygon):
bbox = np.array(annotation.get_bbox(), dtype=np.float32)
# TODO(Eugene): https://jira.devtools.intel.com/browse/CVS-159363
# Temporary solution to handle multiple annotation types.
# Ideally, we should pre-filter annotations during initialization of the dataset.
if Polygon.__name__ in anno_collection: # Polygon for InstSeg has higher priority
for poly in anno_collection[Polygon.__name__]:
bbox = Bbox(*poly.get_bbox()).points
gt_bboxes.append(bbox)
gt_labels.append(annotation.label)
gt_labels.append(poly.label)

if self.include_polygons:
gt_polygons.append(annotation)
gt_polygons.append(poly)
else:
gt_masks.append(polygon_to_bitmap([annotation], *img_shape)[0])

# convert xywh to xyxy format
bboxes = np.array(gt_bboxes, dtype=np.float32) if gt_bboxes else np.empty((0, 4))
bboxes[:, 2:] += bboxes[:, :2]
gt_masks.append(polygon_to_bitmap([poly], *img_shape)[0])
elif Bbox.__name__ in anno_collection:
bboxes = anno_collection[Bbox.__name__]
gt_bboxes = [ann.points for ann in bboxes]
gt_labels = [ann.label for ann in bboxes]
for box in bboxes:
poly = Polygon(box.as_polygon())
if self.include_polygons:
gt_polygons.append(poly)
else:
gt_masks.append(polygon_to_bitmap([poly], *img_shape)[0])
elif Ellipse.__name__ in anno_collection:
for ellipse in anno_collection[Ellipse.__name__]:
bbox = Bbox(*ellipse.get_bbox()).points
gt_bboxes.append(bbox)
gt_labels.append(ellipse.label)
poly = Polygon(ellipse.as_polygon(num_points=10))
if self.include_polygons:
gt_polygons.append(poly)
else:
gt_masks.append(polygon_to_bitmap([poly], *img_shape)[0])
else:
warnings.warn(f"No valid annotations found for image {item.id}!", stacklevel=2)

bboxes = np.stack(gt_bboxes, dtype=np.float32, axis=0) if gt_bboxes else np.empty((0, 4))
masks = np.stack(gt_masks, axis=0) if gt_masks else np.zeros((0, *img_shape), dtype=bool)
labels = np.array(gt_labels, dtype=np.int64)

Expand Down
93 changes: 79 additions & 14 deletions src/otx/core/data/dataset/tile.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,14 +8,15 @@
import logging as log
import operator
import warnings
from collections import defaultdict
from copy import deepcopy
from itertools import product
from typing import TYPE_CHECKING, Callable

import numpy as np
import shapely.geometry as sg
import torch
from datumaro import Bbox, DatasetItem, Image, Polygon
from datumaro import Bbox, DatasetItem, Ellipse, Image, Polygon
from datumaro import Dataset as DmDataset
from datumaro.components.annotation import AnnotationType
from datumaro.plugins.tiling import Tile
Expand Down Expand Up @@ -92,6 +93,7 @@ def __init__(
)
self._tile_size = tile_size
self._tile_ann_func_map[AnnotationType.polygon] = OTXTileTransform._tile_polygon
self._tile_ann_func_map[AnnotationType.ellipse] = OTXTileTransform._tile_ellipse
self.with_full_img = with_full_img

@staticmethod
Expand Down Expand Up @@ -132,6 +134,45 @@ def _tile_polygon(
attributes=deepcopy(ann.attributes),
)

@staticmethod
def _tile_ellipse(
ann: Ellipse,
roi_box: sg.Polygon,
threshold_drop_ann: float = 0.8,
*args, # noqa: ARG004
**kwargs, # noqa: ARG004
) -> Polygon | None:
polygon = sg.Polygon(ann.get_points(num_points=10))

# NOTE: polygon may be invalid, e.g. self-intersecting
if not roi_box.intersects(polygon) or not polygon.is_valid:
return None

# NOTE: intersection may return a GeometryCollection or MultiPolygon
inter = polygon.intersection(roi_box)
if isinstance(inter, (sg.GeometryCollection, sg.MultiPolygon)):
shapes = [(geom, geom.area) for geom in list(inter.geoms) if geom.is_valid]
if not shapes:
return None

inter, _ = max(shapes, key=operator.itemgetter(1))

if not isinstance(inter, sg.Polygon) and not inter.is_valid:
return None

prop_area = inter.area / polygon.area

if prop_area < threshold_drop_ann:
return None

inter = _apply_offset(inter, roi_box)

return Polygon(
points=[p for xy in inter.exterior.coords for p in xy],
attributes=deepcopy(ann.attributes),
label=ann.label,
)

def _extract_rois(self, image: Image) -> list[BboxIntCoords]:
"""Extracts Tile ROIs from the given image.

Expand Down Expand Up @@ -467,26 +508,50 @@ def _get_item_impl(self, index: int) -> TileInstSegDataEntity: # type: ignore[o
img = item.media_as(Image)
img_data, img_shape, _ = self._get_img_data_and_shape(img)

anno_collection: dict[str, list] = defaultdict(list)
for anno in item.annotations:
anno_collection[anno.__class__.__name__].append(anno)

gt_bboxes, gt_labels, gt_masks, gt_polygons = [], [], [], []

for annotation in item.annotations:
if isinstance(annotation, Polygon):
bbox = np.array(annotation.get_bbox(), dtype=np.float32)
# TODO(Eugene): https://jira.devtools.intel.com/browse/CVS-159363
# Temporary solution to handle multiple annotation types.
# Ideally, we should pre-filter annotations during initialization of the dataset.

if Polygon.__name__ in anno_collection: # Polygon for InstSeg has higher priority
for poly in anno_collection[Polygon.__name__]:
bbox = Bbox(*poly.get_bbox()).points
gt_bboxes.append(bbox)
gt_labels.append(annotation.label)
gt_labels.append(poly.label)

if self._dataset.include_polygons:
gt_polygons.append(annotation)
gt_polygons.append(poly)
else:
gt_masks.append(polygon_to_bitmap([annotation], *img_shape)[0])

if empty_anno := len(gt_bboxes) == 0:
warnings.warn(f"Empty annotation for image {item.id}", stacklevel=2)

# convert xywh to xyxy format
bboxes = np.empty((0, 4), dtype=np.float32) if empty_anno else np.stack(gt_bboxes, dtype=np.float32)
bboxes[:, 2:] += bboxes[:, :2]
gt_masks.append(polygon_to_bitmap([poly], *img_shape)[0])
elif Bbox.__name__ in anno_collection:
boxes = anno_collection[Bbox.__name__]
gt_bboxes = [ann.points for ann in boxes]
gt_labels = [ann.label for ann in boxes]
for box in boxes:
poly = Polygon(box.as_polygon())
if self._dataset.include_polygons:
gt_polygons.append(poly)
else:
gt_masks.append(polygon_to_bitmap([poly], *img_shape)[0])
elif Ellipse.__name__ in anno_collection:
for ellipse in anno_collection[Ellipse.__name__]:
bbox = Bbox(*ellipse.get_bbox()).points
gt_bboxes.append(bbox)
gt_labels.append(ellipse.label)
poly = Polygon(ellipse.as_polygon(num_points=10))
if self._dataset.include_polygons:
gt_polygons.append(poly)
else:
gt_masks.append(polygon_to_bitmap([poly], *img_shape)[0])
else:
warnings.warn(f"No valid annotations found for image {item.id}!", stacklevel=2)

bboxes = np.stack(gt_bboxes, dtype=np.float32) if gt_bboxes else np.empty((0, 4), dtype=np.float32)
masks = np.stack(gt_masks, axis=0) if gt_masks else np.empty((0, *img_shape), dtype=bool)
labels = np.array(gt_labels, dtype=np.int64)

Expand Down
Loading