Skip to content

Commit

Permalink
add gemma support in llm notebook
Browse files Browse the repository at this point in the history
  • Loading branch information
eaidova committed Feb 23, 2024
1 parent 62b5319 commit a31e1f8
Show file tree
Hide file tree
Showing 7 changed files with 436 additions and 962 deletions.
2 changes: 2 additions & 0 deletions .ci/spellcheck/.pyspelling.wordlist.txt
Original file line number Diff line number Diff line change
Expand Up @@ -232,6 +232,8 @@ Gb
gcc
GEC
GELU
Gemma
gemma
genai
genAI
Girshick
Expand Down
376 changes: 298 additions & 78 deletions notebooks/254-llm-chatbot/254-llm-chatbot.ipynb

Large diffs are not rendered by default.

916 changes: 41 additions & 875 deletions notebooks/254-llm-chatbot/254-rag-chatbot.ipynb

Large diffs are not rendered by default.

22 changes: 14 additions & 8 deletions notebooks/254-llm-chatbot/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,20 +12,26 @@ The tutorial supports different models, you can select one from provided options
The available options are:

* **tiny-llama-1b-chat** - This is the chat model finetuned on top of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T). The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens with the adoption of the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint. More details about model can be found in [model card](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0).
* **tiny-llama-1b-chat** - This is the chat model finetuned on top of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T). The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens with the adoption of the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint. More details about model can be found in [model card](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0)
* **mini-cpm-2b-dpo** - MiniCPM is an End-Size LLM developed by ModelBest Inc. and TsinghuaNLP, with only 2.4B parameters excluding embeddings. After Direct Preference Optimization (DPO) fine-tuning, MiniCPM outperforms many popular 7b, 13b and 70b models. More details can be found in [model_card](https://huggingface.co/openbmb/MiniCPM-2B-dpo-fp16).
* **red-pajama-3b-chat** - A 2.8B parameter pretrained language model based on GPT-NEOX architecture. It was developed by Together Computer and leaders from the open-source AI community. The model is fine-tuned on OASST1 and Dolly2 datasets to enhance chatting ability. More details about model can be found in [HuggingFace model card](https://huggingface.co/togethercomputer/RedPajama-INCITE-Chat-3B-v1).
* **llama-2-7b-chat** - LLama 2 is the second generation of LLama models developed by Meta. Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. llama-2-7b-chat is 7 billions parameters version of LLama 2 finetuned and optimized for dialogue use case. More details about model can be found in the [paper](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/), [repository](https://github.com/facebookresearch/llama) and [HuggingFace model card](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf).
* **qwen1.5-7b-chat** - Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. Qwen1.5 is a language model series including decoder language models of different model sizes. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention. You can find more details about model in the [model card](https://huggingface.co/Qwen/Qwen1.5-7B-Chat).
* **gemma-2b-it** - Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. They are text-to-text, decoder-only large language models, available in English, with open weights, pre-trained variants, and instruction-tuned variants. Gemma models are well-suited for a variety of text generation tasks, including question answering, summarization, and reasoning. This model is instruction-tuned version of 2B parameters model. More details about model can be found in [model card](https://huggingface.co/google/gemma-2b-it).
>**Note**: run model with demo, you will need to accept license agreement.
>You must be a registered user in 🤗 Hugging Face Hub. Please visit [HuggingFace model card](https://huggingface.co/google/gemma-2b-it), carefully read terms of usage and click accept button. You will need to use an access token for the code below to run. For more information on access tokens, refer to [this section of the documentation](https://huggingface.co/docs/hub/security-tokens).
* **red-pajama-3b-chat** - A 2.8B parameter pre-trained language model based on GPT-NEOX architecture. It was developed by Together Computer and leaders from the open-source AI community. The model is fine-tuned on OASST1 and Dolly2 datasets to enhance chatting ability. More details about model can be found in [HuggingFace model card](https://huggingface.co/togethercomputer/RedPajama-INCITE-Chat-3B-v1).
* **gemma-7b-it** - Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. They are text-to-text, decoder-only large language models, available in English, with open weights, pre-trained variants, and instruction-tuned variants. Gemma models are well-suited for a variety of text generation tasks, including question answering, summarization, and reasoning. This model is instruction-tuned version of 7B parameters model. More details about model can be found in [model card](https://huggingface.co/google/gemma-7b-it).
>**Note**: run model with demo, you will need to accept license agreement.
>You must be a registered user in 🤗 Hugging Face Hub. Please visit [HuggingFace model card](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf), carefully read terms of usage and click accept button. You will need to use an access token for downloading model. For more information on access tokens, refer to [this section of the documentation](https://huggingface.co/docs/hub/security-tokens).
* **mpt-7b-chat** - MPT-7B is part of the family of MosaicPretrainedTransformer (MPT) models, which use a modified transformer architecture optimized for efficient training and inference. These architectural changes include performance-optimized layer implementations and the elimination of context length limits by replacing positional embeddings with Attention with Linear Biases ([ALiBi](https://arxiv.org/abs/2108.12409)). Thanks to these modifications, MPT models can be trained with high throughput efficiency and stable convergence. MPT-7B-chat is a chatbot-like model for dialogue generation. It was built by finetuning MPT-7B on the [ShareGPT-Vicuna](https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered), [HC3](https://huggingface.co/datasets/Hello-SimpleAI/HC3), [Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca), [HH-RLHF](https://huggingface.co/datasets/Anthropic/hh-rlhf), and [Evol-Instruct](https://huggingface.co/datasets/victor123/evol_instruct_70k) datasets. More details about model can be found in [blog post](https://www.mosaicml.com/blog/mpt-7b), [repository](https://github.com/mosaicml/llm-foundry/) and [HuggingFace model card](https://huggingface.co/mosaicml/mpt-7b-chat).
>You must be a registered user in 🤗 Hugging Face Hub. Please visit [HuggingFace model card](https://huggingface.co/google/gemma-7b-it), carefully read terms of usage and click accept button. You will need to use an access token for the code below to run. For more information on access tokens, refer to [this section of the documentation](https://huggingface.co/docs/hub/security-tokens).
* **llama-2-7b-chat** - LLama 2 is the second generation of LLama models developed by Meta. Llama 2 is a collection of pre-trained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. llama-2-7b-chat is 7 billions parameters version of LLama 2 finetuned and optimized for dialogue use case. More details about model can be found in the [paper](https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/), [repository](https://github.com/facebookresearch/llama) and [HuggingFace model card](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf).
>**Note**: run model with demo, you will need to accept license agreement.
>You must be a registered user in 🤗 Hugging Face Hub. Please visit [HuggingFace model card](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf), carefully read terms of usage and click accept button. You will need to use an access token for the code below to run. For more information on access tokens, refer to [this section of the documentation](https://huggingface.co/docs/hub/security-tokens).
* **qwen1.5-7b-chat** - Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. Qwen1.5 is a language model series including decoder language models of different model sizes. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention. You can find more details about model in the [model card](https://huggingface.co/Qwen/Qwen1.5-7B-Chat).
* **mpt-7b-chat** - MPT-7B is part of the family of MosaicPretrainedTransformer (MPT) models, which use a modified transformer architecture optimized for efficient training and inference. These architectural changes include performance-optimized layer implementations and the elimination of context length limits by replacing positional embeddings with Attention with Linear Biases ([ALiBi](https://arxiv.org/abs/2108.12409)). Thanks to these modifications, MPT models can be trained with high throughput efficiency and stable convergence. MPT-7B-chat is a chatbot-like model for dialogue generation. It was built by finetuning MPT-7B on the [ShareGPT-Vicuna](https://huggingface.co/datasets/jeffwan/sharegpt_vicuna), [HC3](https://huggingface.co/datasets/Hello-SimpleAI/HC3), [Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca), [HH-RLHF](https://huggingface.co/datasets/Anthropic/hh-rlhf), and [Evol-Instruct](https://huggingface.co/datasets/victor123/evol_instruct_70k) datasets. More details about the model can be found in [blog post](https://www.mosaicml.com/blog/mpt-7b), [repository](https://github.com/mosaicml/llm-foundry/) and [HuggingFace model card](https://huggingface.co/mosaicml/mpt-7b-chat).
* **chatglm3-6b** - ChatGLM3-6B is the latest open-source model in the ChatGLM series. While retaining many excellent features such as smooth dialogue and low deployment threshold from the previous two generations, ChatGLM3-6B employs a more diverse training dataset, more sufficient training steps, and a more reasonable training strategy. ChatGLM3-6B adopts a newly designed [Prompt format](https://github.com/THUDM/ChatGLM3/blob/main/PROMPT_en.md), in addition to the normal multi-turn dialogue. You can find more details about model in the [model card](https://huggingface.co/THUDM/chatglm3-6b)
* **mistral-7b** - The Mistral-7B-v0.1 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. You can find more details about model in the [paper](https://arxiv.org/abs/2310.06825) and [release blog post](https://mistral.ai/news/announcing-mistral-7b/).
* **mistral-7b** - The Mistral-7B-v0.1 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. You can find more details about model in the [model card](https://huggingface.co/mistralai/Mistral-7B-v0.1), [paper](https://arxiv.org/abs/2310.06825) and [release blog post](https://mistral.ai/news/announcing-mistral-7b/).
* **zephyr-7b-beta** - Zephyr is a series of language models that are trained to act as helpful assistants. Zephyr-7B-beta is the second model in the series, and is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) that was trained on on a mix of publicly available, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290). You can find more details about model in [technical report](https://arxiv.org/abs/2310.16944) and [HuggingFace model card](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta).
* **neural-chat-7b-v3-1** - Mistral-7b model fine-tuned using Intel Gaudi. The model fine-tuned on the open source dataset [Open-Orca/SlimOrca](https://huggingface.co/datasets/Open-Orca/SlimOrca) and aligned with [Direct Preference Optimization (DPO) algorithm](https://arxiv.org/abs/2305.18290). More details can be found in [model card](https://huggingface.co/Intel/neural-chat-7b-v3-3) and [blog post](https://medium.com/@NeuralCompressor/the-practice-of-supervised-finetuning-and-direct-preference-optimization-on-habana-gaudi2-a1197d8a3cd3).
* **notus-7b-v1** - Notus is a collection of fine-tuned models using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290). and related [RLHF](https://huggingface.co/blog/rlhf) techniques. This model is the first version, fine-tuned with DPO over zephyr-7b-sft. Following a data-first approach, the only difference between Notus-7B-v1 and Zephyr-7B-beta is the preference dataset used for dDPO. Proposed approach for dataset creation helps to effectively fine-tune Notus-7b that surpasses Zephyr-7B-beta and Claude 2 on [AlpacaEval](https://tatsu-lab.github.io/alpaca_eval/). More details about model can be found in [model card](https://huggingface.co/argilla/notus-7b-v1).
* **youri-7b-chat** - Youri-7b-chat is a Llama2 based model. [Rinna Co., Ltd.](https://rinna.co.jp/) conducted further pre-training for the Llama2 model with a mixture of English and Japanese datasets to improve Japanese task capability. The model is publicly released on Hugging Face hub. You can find detailed information at the [rinna/youri-7b-chat project page](https://huggingface.co/rinna/youri-7b).
* **youri-7b-chat** - Youri-7b-chat is a Llama2 based model. [Rinna Co., Ltd.](https://rinna.co.jp/) conducted further pre-training for the Llama2 model with a mixture of English and Japanese datasets to improve Japanese task capability. The model is publicly released on Hugging Face hub. You can find detailed information at the [rinna/youri-7b-chat project page](https://huggingface.co/rinna/youri-7b).
* **baichuan2-7b-chat** - Baichuan 2 is the new generation of large-scale open-source language models launched by [Baichuan Intelligence inc](https://www.baichuan-ai.com/home). It is trained on a high-quality corpus with 2.6 trillion tokens and has achieved the best performance in authoritative Chinese and English benchmarks of the same size.

The image below illustrates the provided user instruction and model answer examples.
Expand Down
16 changes: 16 additions & 0 deletions notebooks/254-llm-chatbot/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -86,6 +86,14 @@ def youri_partial_text_processor(partial_text, new_text):
Answer: </s>
<|assistant|>""",
},
"gemma-2b-it": {
"model_id": "google/gemma-2b-it",
"remote": True,
"start_message": DEFAULT_SYSTEM_PROMPT + ", ",
"history_template": "<start_of_turn>user{user}<end_of_turn><start_of_turn>model{assistant}<end_of_turn>",
"current_message_template": "<start_of_turn>user{user}<end_of_turn><start_of_turn>model{assistant}",
"prompt_template": f"""{DEFAULT_RAG_PROMPT},"""+"""<start_of_turn>user{question}<end_of_turn><start_of_turn>context{context}<end_of_turn><start_of_turn>model"""
},
"red-pajama-3b-chat": {
"model_id": "togethercomputer/RedPajama-INCITE-Chat-3B-v1",
"remote": False,
Expand All @@ -100,6 +108,14 @@ def youri_partial_text_processor(partial_text, new_text):
Context: {context}
Answer: <bot>""",
},
"gemma-7b-it": {
"model_id": "google/gemma-7b-it",
"remote": True,
"start_message": DEFAULT_SYSTEM_PROMPT + ", ",
"history_template": "<start_of_turn>user{user}<end_of_turn><start_of_turn>model{assistant}<end_of_turn>",
"current_message_template": "<start_of_turn>user{user}<end_of_turn><start_of_turn>model{assistant}",
"prompt_template": f"""{DEFAULT_RAG_PROMPT},"""+"""<start_of_turn>user{question}<end_of_turn><start_of_turn>context{context}<end_of_turn><start_of_turn>model"""
},
"llama-2-chat-7b": {
"model_id": "meta-llama/Llama-2-7b-chat-hf",
"remote": False,
Expand Down
65 changes: 64 additions & 1 deletion notebooks/254-llm-chatbot/converter.py
Original file line number Diff line number Diff line change
Expand Up @@ -377,13 +377,75 @@ def convert_chatglm(pt_model: torch.nn.Module, model_path: Path):

ov_model.validate_nodes_and_infer_types()
if make_stateful is not None:
print("PATCH STATEFUL")
patch_stateful(ov_model, "chatglm")
ov.save_model(ov_model, ov_out_path)
del ov_model
cleanup_torchscript_cache()
del pt_model

def convert_gemma(pt_model: torch.nn.Module, model_path: Path):
"""
Gamma model conversion function
Params:
pt_model: PyTorch model
model_path: path for saving model
Returns:
None
"""
ov_out_path = Path(model_path) / "openvino_model.xml"
pt_model.config.save_pretrained(ov_out_path.parent)
pt_model.config.use_cache = True
outs = pt_model(input_ids=torch.ones((2, 10), dtype=torch.long))
inputs = ["input_ids"]
outputs = ["logits"]

dynamic_shapes = {
"input_ids": {0: "batch_size", 1: "seq_len"},
"attention_mask": {0: "batch_size", 1: "seq_len"},
"position_ids": {0: "batch_size", 1: "seq_len"},
}
inputs += ["attention_mask", "position_ids"]
for idx in range(len(outs.past_key_values)):
inputs.extend([f"past_key_values.{idx}.key", f"past_key_values.{idx}.value"])
dynamic_shapes[inputs[-1]] = {0: "batch_size", 2: "past_sequence + sequence"}
dynamic_shapes[inputs[-2]] = {0: "batch_size", 2: "past_sequence + sequence"}
outputs.extend([f"present.{idx}.key", f"present.{idx}.value"])

dummy_inputs = {
"input_ids": torch.ones((2, 2), dtype=torch.long),
"attention_mask": torch.ones((2, 12), dtype=torch.long),
"position_ids": torch.tensor([[10, 11], [10, 11]], dtype=torch.long),
"past_key_values": outs.past_key_values,
}
pt_model.config.torchscript = True
ov_model = ov.convert_model(pt_model, example_input=dummy_inputs)
for inp_name, m_input, input_data in zip(
inputs, ov_model.inputs, flattenize_inputs(dummy_inputs.values())
):
input_node = m_input.get_node()
if input_node.element_type == ov.Type.dynamic:
m_input.get_node().set_element_type(ov.Type.f32)
shape = list(input_data.shape)
if inp_name in dynamic_shapes:
for k in dynamic_shapes[inp_name]:
shape[k] = -1
input_node.set_partial_shape(ov.PartialShape(shape))
m_input.get_tensor().set_names({inp_name})

for out, out_name in zip(ov_model.outputs, outputs):
out.get_tensor().set_names({out_name})

ov_model.validate_nodes_and_infer_types()
if make_stateful is not None:
patch_stateful(ov_model, "gemma")
ov.save_model(ov_model, ov_out_path)
del ov_model
cleanup_torchscript_cache()
del pt_model



def convert_mpnet(pt_model: torch.nn.Module, model_path: Path):
ov_out_path = Path(model_path) / "openvino_model.xml"
dummy_inputs = {"input_ids": torch.ones((1, 10), dtype=torch.long), "attention_mask": torch.ones(
Expand All @@ -404,6 +466,7 @@ def convert_bert(pt_model: torch.nn.Module, model_path: Path):
"mpt": convert_mpt,
"chatglm3": convert_chatglm,
"baichuan2": convert_baichuan,
"gemma": convert_gemma,
# embedding models
"all-mpnet-base-v2": convert_mpnet,
"text2vec-large-chinese": convert_bert,
Expand Down
1 change: 1 addition & 0 deletions notebooks/254-llm-chatbot/ov_llm_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -367,4 +367,5 @@ def _from_pretrained(
"mpt": OVMPTModel,
"baichuan2": OVBAICHUANModel,
"chatglm3": OVCHATGLMModel,
"gemma": OVModelForCausalLM
}

0 comments on commit a31e1f8

Please sign in to comment.