Skip to content

Commit

Permalink
feature(xcy): add muzero config for connect4 (#107)
Browse files Browse the repository at this point in the history
* polish(xcy):add muzero config for connect4

* polish(xcy):adjusting parameters in sp_mode
  • Loading branch information
HarryXuancy authored Oct 16, 2023
1 parent 237f7bf commit 5c02542
Show file tree
Hide file tree
Showing 2 changed files with 166 additions and 0 deletions.
83 changes: 83 additions & 0 deletions zoo/board_games/connect4/config/connect4_muzero_bot_mode_config.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
from easydict import EasyDict

# ==============================================================
# begin of the most frequently changed config specified by the user
# ==============================================================
collector_env_num = 8
n_episode = 8
evaluator_env_num = 5
num_simulations = 50
update_per_collect = 50
reanalyze_ratio = 0.
batch_size = 256
max_env_step = int(5e5)
# ==============================================================
# end of the most frequently changed config specified by the user
# ==============================================================

connect4_muzero_config = dict(
exp_name=
f'data_mz_ctree/connect4_botmode_rulebot_seed0',
env=dict(
battle_mode='play_with_bot_mode',
bot_action_type='rule',
channel_last=True,
collector_env_num=collector_env_num,
evaluator_env_num=evaluator_env_num,
n_evaluator_episode=evaluator_env_num,
manager=dict(shared_memory=False, ),
),
policy=dict(
model=dict(
observation_shape=(3, 6, 7),
action_space_size=7,
image_channel=3,
num_res_blocks=1,
num_channels=64,
support_scale=300,
reward_support_size=601,
value_support_size=601,
),
cuda=True,
env_type='board_games',
game_segment_length=int(6 * 7 / 2), # for battle_mode='play_with_bot_mode'
update_per_collect=update_per_collect,
batch_size=batch_size,
optim_type='Adam',
lr_piecewise_constant_decay=False,
learning_rate=0.003,
grad_clip_value=0.5,
num_simulations=num_simulations,
reanalyze_ratio=reanalyze_ratio,
# NOTE:In board_games, we set large td_steps to make sure the value target is the final outcome.
td_steps=int(6 * 7 / 2), # for battle_mode='play_with_bot_mode'
# NOTE:In board_games, we set discount_factor=1.
discount_factor=1,
n_episode=n_episode,
eval_freq=int(2e3),
replay_buffer_size=int(1e5),
collector_env_num=collector_env_num,
evaluator_env_num=evaluator_env_num,
),
)
connect4_muzero_config = EasyDict(connect4_muzero_config)
main_config = connect4_muzero_config

connect4_muzero_create_config = dict(
env=dict(
type='connect4',
import_names=['zoo.board_games.connect4.envs.connect4_env'],
),
env_manager=dict(type='subprocess'),
policy=dict(
type='muzero',
import_names=['lzero.policy.muzero'],
),
)
connect4_muzero_create_config = EasyDict(connect4_muzero_create_config)
create_config = connect4_muzero_create_config

if __name__ == "__main__":
from lzero.entry import train_muzero

train_muzero([main_config, create_config], seed=1, max_env_step=max_env_step)
83 changes: 83 additions & 0 deletions zoo/board_games/connect4/config/connect4_muzero_sp_mode_config.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
from easydict import EasyDict

# ==============================================================
# begin of the most frequently changed config specified by the user
# ==============================================================
collector_env_num = 8
n_episode = 8
evaluator_env_num = 5
num_simulations = 50
update_per_collect = 50
reanalyze_ratio = 0.
batch_size = 256
max_env_step = int(5e5)
# ==============================================================
# end of the most frequently changed config specified by the user
# ==============================================================

connect4_muzero_config = dict(
exp_name=
f'data_mz_ctree/connect4_spmode_rulebot_seed0',
env=dict(
battle_mode='self_play_mode',
bot_action_type='rule',
channel_last=True,
collector_env_num=collector_env_num,
evaluator_env_num=evaluator_env_num,
n_evaluator_episode=evaluator_env_num,
manager=dict(shared_memory=False, ),
),
policy=dict(
model=dict(
observation_shape=(3, 6, 7),
action_space_size=7,
image_channel=3,
num_res_blocks=1,
num_channels=64,
support_scale=300,
reward_support_size=601,
value_support_size=601,
),
cuda=True,
env_type='board_games',
game_segment_length=int(6 * 7), # for battle_mode='self_play_mode'
update_per_collect=update_per_collect,
batch_size=batch_size,
optim_type='Adam',
lr_piecewise_constant_decay=False,
learning_rate=0.003,
grad_clip_value=0.5,
num_simulations=num_simulations,
reanalyze_ratio=reanalyze_ratio,
# NOTE:In board_games, we set large td_steps to make sure the value target is the final outcome.
td_steps=int(6 * 7), # for battle_mode='self_play_mode'
# NOTE:In board_games, we set discount_factor=1.
discount_factor=1,
n_episode=n_episode,
eval_freq=int(2e3),
replay_buffer_size=int(1e5),
collector_env_num=collector_env_num,
evaluator_env_num=evaluator_env_num,
),
)
connect4_muzero_config = EasyDict(connect4_muzero_config)
main_config = connect4_muzero_config

connect4_muzero_create_config = dict(
env=dict(
type='connect4',
import_names=['zoo.board_games.connect4.envs.connect4_env'],
),
env_manager=dict(type='subprocess'),
policy=dict(
type='muzero',
import_names=['lzero.policy.muzero'],
),
)
connect4_muzero_create_config = EasyDict(connect4_muzero_create_config)
create_config = connect4_muzero_create_config

if __name__ == "__main__":
from lzero.entry import train_muzero

train_muzero([main_config, create_config], seed=1, max_env_step=max_env_step)

0 comments on commit 5c02542

Please sign in to comment.