-
Notifications
You must be signed in to change notification settings - Fork 550
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[WIP][Feature] Support RTMDet-Ins fast training #649
Open
RangiLyu
wants to merge
14
commits into
open-mmlab:dev
Choose a base branch
from
RangiLyu:rtmins-train
base: dev
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
14 commits
Select commit
Hold shift + click to select a range
258a929
support rtmdet ins training
RangiLyu fea6489
use einsum
RangiLyu fa50e55
update s config
RangiLyu d8bf81a
downsample in pipeline
RangiLyu 2af73c3
add mask2tensor to l cfg
RangiLyu a4a0af7
refactor mask process
RangiLyu fe715b9
add viz code
RangiLyu a8a9d44
fix pipeline2 mask2tensor
RangiLyu 9f922bd
lint
RangiLyu b02bf5a
center of mask
RangiLyu dd18476
add downsample stride
RangiLyu f7017fe
fix mask decode
RangiLyu ff0431b
share k head
RangiLyu 2e1ad61
Merge branch 'dev' of github.com:open-mmlab/mmyolo into rtmins-train
RangiLyu File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
340 changes: 340 additions & 0 deletions
340
configs/rtmdet_ins/rtmdet-ins_l_syncbn_fast_8xb32-300e_coco.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change | ||||
---|---|---|---|---|---|---|
@@ -0,0 +1,340 @@ | ||||||
_base_ = ['../_base_/default_runtime.py'] | ||||||
|
||||||
# ========================Frequently modified parameters====================== | ||||||
# -----data related----- | ||||||
data_root = 'data/coco/' | ||||||
# Path of train annotation file | ||||||
train_ann_file = 'annotations/instances_train2017.json' | ||||||
train_data_prefix = 'train2017/' # Prefix of train image path | ||||||
# Path of val annotation file | ||||||
val_ann_file = 'annotations/instances_val2017.json' | ||||||
val_data_prefix = 'val2017/' # Prefix of val image path | ||||||
|
||||||
num_classes = 80 # Number of classes for classification | ||||||
# Batch size of a single GPU during training | ||||||
train_batch_size_per_gpu = 32 | ||||||
# Worker to pre-fetch data for each single GPU during training | ||||||
train_num_workers = 10 | ||||||
# persistent_workers must be False if num_workers is 0. | ||||||
persistent_workers = True | ||||||
|
||||||
# -----train val related----- | ||||||
# Base learning rate for optim_wrapper. Corresponding to 8xb16=64 bs | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||
base_lr = 0.004 | ||||||
max_epochs = 300 # Maximum training epochs | ||||||
# Change train_pipeline for final 20 epochs (stage 2) | ||||||
num_epochs_stage2 = 20 | ||||||
|
||||||
model_test_cfg = dict( | ||||||
# The config of multi-label for multi-class prediction. | ||||||
multi_label=True, | ||||||
# The number of boxes before NMS | ||||||
nms_pre=1000, | ||||||
score_thr=0.05, # Threshold to filter out boxes. | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 这里可以加个注释说明:实例分割任务相比目标检测后处理速度更慢,因此需要加大 score_thr 和减少 nms_pre 和 max_per_img 等参数 |
||||||
nms=dict(type='nms', iou_threshold=0.6), # NMS type and threshold | ||||||
max_per_img=100, # Max number of detections of each image | ||||||
mask_thr_binary=0.5) # Threshold of binary mask | ||||||
|
||||||
# ========================Possible modified parameters======================== | ||||||
# -----data related----- | ||||||
img_scale = (640, 640) # width, height | ||||||
# ratio range for random resize | ||||||
random_resize_ratio_range = (0.1, 2.0) | ||||||
# Cached images number in mosaic | ||||||
mosaic_max_cached_images = 40 | ||||||
# Number of cached images in mixup | ||||||
mixup_max_cached_images = 20 | ||||||
# Dataset type, this will be used to define the dataset | ||||||
dataset_type = 'YOLOv5CocoDataset' | ||||||
# Batch size of a single GPU during validation | ||||||
val_batch_size_per_gpu = 32 | ||||||
# Worker to pre-fetch data for each single GPU during validation | ||||||
val_num_workers = 10 | ||||||
use_mask2refine = True | ||||||
copypaste_prob = 0.3 | ||||||
mask_downsample_stride = 4 | ||||||
|
||||||
# Config of batch shapes. Only on val. | ||||||
batch_shapes_cfg = dict( | ||||||
type='BatchShapePolicy', | ||||||
batch_size=val_batch_size_per_gpu, | ||||||
img_size=img_scale[0], | ||||||
size_divisor=32, | ||||||
extra_pad_ratio=0.5) | ||||||
|
||||||
# -----model related----- | ||||||
# The scaling factor that controls the depth of the network structure | ||||||
deepen_factor = 1.0 | ||||||
# The scaling factor that controls the width of the network structure | ||||||
widen_factor = 1.0 | ||||||
# Strides of multi-scale prior box | ||||||
strides = [8, 16, 32] | ||||||
|
||||||
norm_cfg = dict(type='BN') # Normalization config | ||||||
|
||||||
# -----train val related----- | ||||||
lr_start_factor = 1.0e-5 | ||||||
dsl_topk = 13 # Number of bbox selected in each level | ||||||
loss_cls_weight = 1.0 | ||||||
loss_bbox_weight = 2.0 | ||||||
loss_mask_weight = 2.0 | ||||||
qfl_beta = 2.0 # beta of QualityFocalLoss | ||||||
weight_decay = 0.05 | ||||||
|
||||||
# Save model checkpoint and validation intervals | ||||||
save_checkpoint_intervals = 10 | ||||||
# validation intervals in stage 2 | ||||||
val_interval_stage2 = 1 | ||||||
# The maximum checkpoints to keep. | ||||||
max_keep_ckpts = 3 | ||||||
# single-scale training is recommended to | ||||||
# be turned on, which can speed up training. | ||||||
env_cfg = dict(cudnn_benchmark=True) | ||||||
|
||||||
# ===============================Unmodified in most cases==================== | ||||||
model = dict( | ||||||
type='YOLODetector', | ||||||
data_preprocessor=dict( | ||||||
type='YOLOv5DetDataPreprocessor', | ||||||
mean=[103.53, 116.28, 123.675], | ||||||
std=[57.375, 57.12, 58.395], | ||||||
bgr_to_rgb=False), | ||||||
backbone=dict( | ||||||
type='CSPNeXt', | ||||||
arch='P5', | ||||||
expand_ratio=0.5, | ||||||
deepen_factor=deepen_factor, | ||||||
widen_factor=widen_factor, | ||||||
channel_attention=True, | ||||||
norm_cfg=norm_cfg, | ||||||
act_cfg=dict(type='SiLU', inplace=True)), | ||||||
neck=dict( | ||||||
type='CSPNeXtPAFPN', | ||||||
deepen_factor=deepen_factor, | ||||||
widen_factor=widen_factor, | ||||||
in_channels=[256, 512, 1024], | ||||||
out_channels=256, | ||||||
num_csp_blocks=3, | ||||||
expand_ratio=0.5, | ||||||
norm_cfg=norm_cfg, | ||||||
act_cfg=dict(type='SiLU', inplace=True)), | ||||||
bbox_head=dict( | ||||||
type='RTMDetInsHead', | ||||||
head_module=dict( | ||||||
type='RTMDetInsSepBNHeadModule', | ||||||
num_classes=num_classes, | ||||||
in_channels=256, | ||||||
stacked_convs=2, | ||||||
feat_channels=256, | ||||||
norm_cfg=norm_cfg, | ||||||
act_cfg=dict(type='SiLU', inplace=True), | ||||||
share_conv=True, | ||||||
pred_kernel_size=1, | ||||||
featmap_strides=strides), | ||||||
prior_generator=dict( | ||||||
type='mmdet.MlvlPointGenerator', offset=0, strides=strides), | ||||||
bbox_coder=dict(type='DistancePointBBoxCoder'), | ||||||
loss_cls=dict( | ||||||
type='mmdet.QualityFocalLoss', | ||||||
use_sigmoid=True, | ||||||
beta=qfl_beta, | ||||||
loss_weight=loss_cls_weight), | ||||||
loss_bbox=dict(type='mmdet.GIoULoss', loss_weight=loss_bbox_weight), | ||||||
loss_mask=dict( | ||||||
type='mmdet.DiceLoss', | ||||||
loss_weight=loss_mask_weight, | ||||||
eps=5e-6, | ||||||
reduction='mean'), | ||||||
mask_loss_stride=mask_downsample_stride), | ||||||
train_cfg=dict( | ||||||
assigner=dict( | ||||||
type='BatchDynamicSoftLabelAssigner', | ||||||
num_classes=num_classes, | ||||||
topk=dsl_topk, | ||||||
iou_calculator=dict(type='mmdet.BboxOverlaps2D')), | ||||||
allowed_border=-1, | ||||||
pos_weight=-1, | ||||||
debug=False), | ||||||
test_cfg=model_test_cfg, | ||||||
) | ||||||
|
||||||
train_pipeline = [ | ||||||
dict(type='LoadImageFromFile', file_client_args=_base_.file_client_args), | ||||||
dict( | ||||||
type='LoadAnnotations', | ||||||
with_bbox=True, | ||||||
with_mask=True, | ||||||
mask2bbox=use_mask2refine), | ||||||
dict( | ||||||
type='Mosaic', | ||||||
img_scale=img_scale, | ||||||
use_cached=True, | ||||||
max_cached_images=mosaic_max_cached_images, | ||||||
pad_val=114.0), | ||||||
dict(type='YOLOv5CopyPaste', prob=copypaste_prob), | ||||||
dict( | ||||||
type='mmdet.RandomResize', | ||||||
# img_scale is (width, height) | ||||||
scale=(img_scale[0] * 2, img_scale[1] * 2), | ||||||
ratio_range=random_resize_ratio_range, | ||||||
resize_type='mmdet.Resize', | ||||||
keep_ratio=True), | ||||||
dict( | ||||||
type='mmdet.RandomCrop', | ||||||
crop_size=img_scale, | ||||||
recompute_bbox=True, | ||||||
allow_negative_crop=True), | ||||||
dict(type='mmdet.FilterAnnotations', min_gt_bbox_wh=(1, 1)), | ||||||
dict(type='mmdet.YOLOXHSVRandomAug'), | ||||||
dict(type='mmdet.RandomFlip', prob=0.5), | ||||||
dict(type='mmdet.Pad', size=img_scale, pad_val=dict(img=(114, 114, 114))), | ||||||
dict( | ||||||
type='YOLOv5MixUp', | ||||||
use_cached=True, | ||||||
max_cached_images=mixup_max_cached_images), | ||||||
dict(type='Mask2Tensor', downsample_stride=mask_downsample_stride), | ||||||
dict(type='mmdet.PackDetInputs') | ||||||
] | ||||||
|
||||||
train_pipeline_stage2 = [ | ||||||
dict(type='LoadImageFromFile', file_client_args=_base_.file_client_args), | ||||||
dict( | ||||||
type='LoadAnnotations', | ||||||
with_bbox=True, | ||||||
with_mask=True, | ||||||
mask2bbox=use_mask2refine), | ||||||
dict( | ||||||
type='mmdet.RandomResize', | ||||||
scale=img_scale, | ||||||
ratio_range=random_resize_ratio_range, | ||||||
resize_type='mmdet.Resize', | ||||||
keep_ratio=True), | ||||||
dict( | ||||||
type='mmdet.RandomCrop', | ||||||
crop_size=img_scale, | ||||||
recompute_bbox=True, | ||||||
allow_negative_crop=True), | ||||||
dict(type='mmdet.FilterAnnotations', min_gt_bbox_wh=(1, 1)), | ||||||
dict(type='mmdet.YOLOXHSVRandomAug'), | ||||||
dict(type='mmdet.RandomFlip', prob=0.5), | ||||||
dict(type='mmdet.Pad', size=img_scale, pad_val=dict(img=(114, 114, 114))), | ||||||
dict(type='Mask2Tensor', downsample_stride=mask_downsample_stride), | ||||||
dict(type='mmdet.PackDetInputs') | ||||||
] | ||||||
|
||||||
test_pipeline = [ | ||||||
dict(type='LoadImageFromFile', file_client_args=_base_.file_client_args), | ||||||
dict(type='YOLOv5KeepRatioResize', scale=img_scale), | ||||||
dict( | ||||||
type='LetterResize', | ||||||
scale=img_scale, | ||||||
allow_scale_up=False, | ||||||
pad_val=dict(img=114)), | ||||||
dict( | ||||||
type='LoadAnnotations', | ||||||
with_bbox=True, | ||||||
with_mask=True, | ||||||
_scope_='mmdet'), | ||||||
dict( | ||||||
type='mmdet.PackDetInputs', | ||||||
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | ||||||
'scale_factor', 'pad_param')) | ||||||
] | ||||||
|
||||||
train_dataloader = dict( | ||||||
batch_size=train_batch_size_per_gpu, | ||||||
num_workers=train_num_workers, | ||||||
persistent_workers=persistent_workers, | ||||||
pin_memory=True, | ||||||
collate_fn=dict(type='yolov5_collate'), | ||||||
sampler=dict(type='DefaultSampler', shuffle=True), | ||||||
dataset=dict( | ||||||
type=dataset_type, | ||||||
data_root=data_root, | ||||||
ann_file=train_ann_file, | ||||||
data_prefix=dict(img=train_data_prefix), | ||||||
filter_cfg=dict(filter_empty_gt=True, min_size=32), | ||||||
pipeline=train_pipeline)) | ||||||
|
||||||
val_dataloader = dict( | ||||||
batch_size=val_batch_size_per_gpu, | ||||||
num_workers=val_num_workers, | ||||||
persistent_workers=persistent_workers, | ||||||
pin_memory=True, | ||||||
drop_last=False, | ||||||
sampler=dict(type='DefaultSampler', shuffle=False), | ||||||
dataset=dict( | ||||||
type=dataset_type, | ||||||
data_root=data_root, | ||||||
ann_file=val_ann_file, | ||||||
data_prefix=dict(img=val_data_prefix), | ||||||
test_mode=True, | ||||||
batch_shapes_cfg=batch_shapes_cfg, | ||||||
pipeline=test_pipeline)) | ||||||
|
||||||
test_dataloader = val_dataloader | ||||||
|
||||||
# Reduce evaluation time | ||||||
val_evaluator = dict( | ||||||
type='mmdet.CocoMetric', | ||||||
proposal_nums=(100, 1, 10), | ||||||
ann_file=data_root + val_ann_file, | ||||||
metric=['bbox', 'segm']) | ||||||
test_evaluator = val_evaluator | ||||||
|
||||||
# optimizer | ||||||
optim_wrapper = dict( | ||||||
type='OptimWrapper', | ||||||
optimizer=dict(type='AdamW', lr=base_lr, weight_decay=weight_decay), | ||||||
paramwise_cfg=dict( | ||||||
norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True)) | ||||||
|
||||||
# learning rate | ||||||
param_scheduler = [ | ||||||
dict( | ||||||
type='LinearLR', | ||||||
start_factor=lr_start_factor, | ||||||
by_epoch=False, | ||||||
begin=0, | ||||||
end=1000), | ||||||
dict( | ||||||
# use cosine lr from 150 to 300 epoch | ||||||
type='CosineAnnealingLR', | ||||||
eta_min=base_lr * 0.05, | ||||||
begin=max_epochs // 2, | ||||||
end=max_epochs, | ||||||
T_max=max_epochs // 2, | ||||||
by_epoch=True, | ||||||
convert_to_iter_based=True), | ||||||
] | ||||||
|
||||||
# hooks | ||||||
default_hooks = dict( | ||||||
checkpoint=dict( | ||||||
type='CheckpointHook', | ||||||
interval=save_checkpoint_intervals, | ||||||
max_keep_ckpts=max_keep_ckpts # only keep latest 3 checkpoints | ||||||
)) | ||||||
|
||||||
custom_hooks = [ | ||||||
dict( | ||||||
type='EMAHook', | ||||||
ema_type='ExpMomentumEMA', | ||||||
momentum=0.0002, | ||||||
update_buffers=True, | ||||||
strict_load=False, | ||||||
priority=49), | ||||||
dict( | ||||||
type='mmdet.PipelineSwitchHook', | ||||||
switch_epoch=max_epochs - num_epochs_stage2, | ||||||
switch_pipeline=train_pipeline_stage2) | ||||||
] | ||||||
|
||||||
train_cfg = dict( | ||||||
type='EpochBasedTrainLoop', | ||||||
max_epochs=max_epochs, | ||||||
val_interval=save_checkpoint_intervals, | ||||||
dynamic_intervals=[(max_epochs - num_epochs_stage2, val_interval_stage2)]) | ||||||
|
||||||
val_cfg = dict(type='ValLoop') | ||||||
test_cfg = dict(type='TestLoop') |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
配置应该是放到
config/rtmdet/ins_seg
下比较好?更好管理?你觉得呢