MMClassification Release V0.20.0
Tomorrow is the Chinese new year. Happy new year!
Highlights
- Support K-fold cross-validation. The tutorial will be released later.
- Support HRNet, ConvNeXt, Twins, and EfficientNet.
- Support model conversion from PyTorch to Core-ML by a tool.
New Features
- Support K-fold cross-validation. (#563)
- Support HRNet and add pre-trained models. (#660)
- Support ConvNeXt and add pre-trained models. (#670)
- Support Twins and add pre-trained models. (#642)
- Support EfficientNet and add pre-trained models.(#649)
- Support
features_only
option inTIMMBackbone
. (#668) - Add conversion script from pytorch to Core-ML model. (#597)
Improvements
- New-style CPU training and inference. (#674)
- Add setup multi-processing both in train and test. (#671)
- Rewrite channel split operation in ShufflenetV2. (#632)
- Deprecate the support for "python setup.py test". (#646)
- Support single-label, softmax, custom eps by asymmetric loss. (#609)
- Save class names in best checkpoint created by evaluation hook. (#641)
Bug Fixes
- Fix potential unexcepted behaviors if
metric_options
is not specified in multi-label evaluation. (#647) - Fix API changes in
pytorch-grad-cam>=1.3.7
. (#656) - Fix bug which breaks
cal_train_time
inanalyze_logs.py
. (#662)
Docs Update
- Update README in configs according to OpenMMLab standard. (#672)
- Update installation guide and README. (#624)
Contributors
A total of 10 developers contributed to this release.
@Ezra-Yu @mzr1996 @rlleshi @WINDSKY45 @shinya7y @Minyus @0x4f5da2 @imyhxy @dreamer121121 @xiefeifeihu