Skip to content

Commit

Permalink
[Reproduce] Reproduce RepVGG Training Accuracy. (#1264)
Browse files Browse the repository at this point in the history
* repr repvgg

* add VisionRRC

* uodate repvgg configs

* add BCD seriers cfgs

* add cv backend config

* add vision configs

* add L2se configs

* add ra configs

* add num-works configs

* add num-works configs

* configs

* update README

* rm extra config

* reset un-needed changes

* update

* reset pbn

* update readme

* update code

* update code

* refine doc
  • Loading branch information
Ezra-Yu authored Dec 30, 2022
1 parent e0e6a1f commit 88e5ba2
Show file tree
Hide file tree
Showing 32 changed files with 352 additions and 237 deletions.
217 changes: 162 additions & 55 deletions configs/repvgg/README.md

Large diffs are not rendered by default.

This file was deleted.

This file was deleted.

This file was deleted.

This file was deleted.

This file was deleted.

This file was deleted.

This file was deleted.

This file was deleted.

This file was deleted.

This file was deleted.

This file was deleted.

This file was deleted.

191 changes: 79 additions & 112 deletions configs/repvgg/metafile.yml
Original file line number Diff line number Diff line change
Expand Up @@ -14,188 +14,155 @@ Collections:
Version: v0.16.0

Models:
- Name: repvgg-A0_3rdparty_4xb64-coslr-120e_in1k
- Name: repvgg-A0_8xb32_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-A0_4xb64-coslr-120e_in1k.py
Config: configs/repvgg/repvgg-A0_8xb32_in1k.py
Metadata:
FLOPs: 1520000000
Parameters: 9110000
FLOPs: 1360233728
Parameters: 8309384
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 72.41
Top 5 Accuracy: 90.50
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A0_3rdparty_4xb64-coslr-120e_in1k_20210909-883ab98c.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L196
- Name: repvgg-A1_3rdparty_4xb64-coslr-120e_in1k
Top 1 Accuracy: 72.37
Top 5 Accuracy: 90.56
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A0_8xb32_in1k_20221213-60ae8e23.pth
- Name: repvgg-A1_8xb32_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-A1_4xb64-coslr-120e_in1k.py
Config: configs/repvgg/repvgg-A1_8xb32_in1k.py
Metadata:
FLOPs: 2640000000
Parameters: 14090000
FLOPs: 2362750208
Parameters: 12789864
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 74.47
Top 5 Accuracy: 91.85
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A1_3rdparty_4xb64-coslr-120e_in1k_20210909-24003a24.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L200
- Name: repvgg-A2_3rdparty_4xb64-coslr-120e_in1k
Top 1 Accuracy: 74.23
Top 5 Accuracy: 91.80
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A1_8xb32_in1k_20221213-f81bf3df.pth
- Name: repvgg-A2_8xb32_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-A2_4xb64-coslr-120e_in1k.py
Config: configs/repvgg/repvgg-A2_8xb32_in1k.py
Metadata:
FLOPs: 28210000000
Parameters: 5700000
FLOPs: 5115612544
Parameters: 25499944
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 76.48
Top 5 Accuracy: 93.01
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A2_3rdparty_4xb64-coslr-120e_in1k_20210909-97d7695a.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L204
- Name: repvgg-B0_3rdparty_4xb64-coslr-120e_in1k
Top 1 Accuracy: 76.49
Top 5 Accuracy: 93.09
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-A2_8xb32_in1k_20221213-a8767caf.pth
- Name: repvgg-B0_8xb32_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-B0_4xb64-coslr-120e_in1k.py
Config: configs/repvgg/repvgg-B0_8xb32_in1k.py
Metadata:
FLOPs: 15820000000
Parameters: 3420000
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 75.14
Top 5 Accuracy: 92.42
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B0_3rdparty_4xb64-coslr-120e_in1k_20210909-446375f4.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L208
- Name: repvgg-B1_3rdparty_4xb64-coslr-120e_in1k
Top 1 Accuracy: 75.27
Top 5 Accuracy: 92.21
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B0_8xb32_in1k_20221213-5091ecc7.pth
- Name: repvgg-B1_8xb32_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-B1_4xb64-coslr-120e_in1k.py
Config: configs/repvgg/repvgg-B1_8xb32_in1k.py
Metadata:
FLOPs: 57420000000
Parameters: 13160000
FLOPs: 11813537792
Parameters: 51829480
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 78.37
Top 5 Accuracy: 94.11
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1_3rdparty_4xb64-coslr-120e_in1k_20210909-750cdf67.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L212
- Name: repvgg-B1g2_3rdparty_4xb64-coslr-120e_in1k
Top 1 Accuracy: 78.19
Top 5 Accuracy: 94.04
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1_8xb32_in1k_20221213-d17c45e7.pth
- Name: repvgg-B1g2_8xb32_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-B1g2_4xb64-coslr-120e_in1k.py
Config: configs/repvgg/repvgg-B1g2_8xb32_in1k.py
Metadata:
FLOPs: 45780000000
Parameters: 9820000
FLOPs: 8807794688
Parameters: 41360104
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 77.79
Top 5 Accuracy: 93.88
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1g2_3rdparty_4xb64-coslr-120e_in1k_20210909-344f6422.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L216
- Name: repvgg-B1g4_3rdparty_4xb64-coslr-120e_in1k
Top 1 Accuracy: 77.87
Top 5 Accuracy: 93.99
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1g2_8xb32_in1k_20221213-ae6428fd.pth
- Name: repvgg-B1g4_8xb32_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-B1g4_4xb64-coslr-120e_in1k.py
Config: configs/repvgg/repvgg-B1g4_8xb32_in1k.py
Metadata:
FLOPs: 39970000000
Parameters: 8150000
FLOPs: 7304923136
Parameters: 36125416
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 77.58
Top 5 Accuracy: 93.84
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1g4_3rdparty_4xb64-coslr-120e_in1k_20210909-d4c1a642.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L220
- Name: repvgg-B2_3rdparty_4xb64-coslr-120e_in1k
Top 1 Accuracy: 77.81
Top 5 Accuracy: 93.77
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B1g4_8xb32_in1k_20221213-a7a4aaea.pth
- Name: repvgg-B2_8xb32_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-B2_4xb64-coslr-120e_in1k.py
Config: configs/repvgg/repvgg-B2_8xb32_in1k.py
Metadata:
FLOPs: 89020000000
Parameters: 20420000
FLOPs: 18374175232
Parameters: 80315112
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 78.78
Top 5 Accuracy: 94.42
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B2_3rdparty_4xb64-coslr-120e_in1k_20210909-bd6b937c.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L225
- Name: repvgg-B2g4_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k
Top 1 Accuracy: 78.58
Top 5 Accuracy: 94.23
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B2_8xb32_in1k_20221213-d8b420ef.pth
- Name: repvgg-B2g4_8xb32_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-B2g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
Config: configs/repvgg/repvgg-B2g4_8xb32_in1k.py
Metadata:
FLOPs: 61760000000
Parameters: 12630000
FLOPs: 11329464832
Parameters: 55777512
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 79.38
Top 5 Accuracy: 94.68
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B2g4_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-7b7955f0.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L229
- Name: repvgg-B3_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k
Top 1 Accuracy: 79.44
Top 5 Accuracy: 94.72
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B2g4_8xb32_in1k_20221213-0c1990eb.pth
- Name: repvgg-B3_8xb32_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-B3_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
Config: configs/repvgg/repvgg-B3_8xb32_in1k.py
Metadata:
FLOPs: 123090000000
Parameters: 29170000
FLOPs: 26206448128
Parameters: 110960872
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 80.52
Top 5 Accuracy: 95.26
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B3_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-dda968bf.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L238
- Name: repvgg-B3g4_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k
Top 1 Accuracy: 80.58
Top 5 Accuracy: 95.33
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B3_8xb32_in1k_20221213-927a329a.pth
- Name: repvgg-B3g4_8xb32_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-B3g4_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
Config: configs/repvgg/repvgg-B3g4_8xb32_in1k.py
Metadata:
FLOPs: 83830000000
Parameters: 17900000
FLOPs: 16062065152
Parameters: 75626728
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Metrics:
Top 1 Accuracy: 80.22
Top 5 Accuracy: 95.10
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B3g4_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k_20210909-4e54846a.pth
Converted From:
Weights: https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq
Code: https://github.com/DingXiaoH/RepVGG/blob/9f272318abfc47a2b702cd0e916fca8d25d683e7/repvgg.py#L238
- Name: repvgg-D2se_3rdparty_4xb64-autoaug-lbs-mixup-coslr-200e_in1k
Top 1 Accuracy: 80.26
Top 5 Accuracy: 95.15
Weights: https://download.openmmlab.com/mmclassification/v0/repvgg/repvgg-B3g4_8xb32_in1k_20221213-e01cb280.pth
- Name: repvgg-D2se_3rdparty_in1k
In Collection: RepVGG
Config: configs/repvgg/repvgg-D2se_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py
Config: configs/repvgg/repvgg-D2se_8xb32_in1k.py
Metadata:
FLOPs: 133330000000
Parameters: 36560000
FLOPs: 32838581760
Parameters: 120387572
Results:
- Dataset: ImageNet-1k
Task: Image Classification
Expand Down
12 changes: 0 additions & 12 deletions configs/repvgg/repvgg-A0_4xb64-coslr-120e_in1k.py

This file was deleted.

33 changes: 33 additions & 0 deletions configs/repvgg/repvgg-A0_8xb32_in1k.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
_base_ = [
'../_base_/models/repvgg-A0_in1k.py',
'../_base_/datasets/imagenet_bs32_pil_resize.py',
'../_base_/schedules/imagenet_bs256_coslr.py',
'../_base_/default_runtime.py'
]

val_dataloader = dict(batch_size=256)
test_dataloader = dict(batch_size=256)

# schedule settings
optim_wrapper = dict(
paramwise_cfg=dict(
bias_decay_mult=0.0,
custom_keys={
'branch_3x3.norm': dict(decay_mult=0.0),
'branch_1x1.norm': dict(decay_mult=0.0),
'branch_norm.bias': dict(decay_mult=0.0),
}))

# schedule settings
param_scheduler = dict(
type='CosineAnnealingLR',
T_max=120,
by_epoch=True,
begin=0,
end=120,
convert_to_iter_based=True)

train_cfg = dict(by_epoch=True, max_epochs=120)

default_hooks = dict(
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3))
3 changes: 3 additions & 0 deletions configs/repvgg/repvgg-A0_deploy_in1k.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
_base_ = '../repvgg-A0_8xb32_in1k.py'

model = dict(backbone=dict(deploy=True))
3 changes: 0 additions & 3 deletions configs/repvgg/repvgg-A1_4xb64-coslr-120e_in1k.py

This file was deleted.

3 changes: 3 additions & 0 deletions configs/repvgg/repvgg-A1_8xb32_in1k.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
_base_ = './repvgg-A0_8xb32_in1k.py'

model = dict(backbone=dict(arch='A1'))
Original file line number Diff line number Diff line change
@@ -1,3 +1,3 @@
_base_ = './repvgg-A0_4xb64-coslr-120e_in1k.py'
_base_ = './repvgg-A0_8xb32_in1k.py'

model = dict(backbone=dict(arch='A2'), head=dict(in_channels=1408))
Original file line number Diff line number Diff line change
@@ -1,3 +1,3 @@
_base_ = './repvgg-A0_4xb64-coslr-120e_in1k.py'
_base_ = './repvgg-A0_8xb32_in1k.py'

model = dict(backbone=dict(arch='B0'), head=dict(in_channels=1280))
Original file line number Diff line number Diff line change
@@ -1,3 +1,3 @@
_base_ = './repvgg-A0_4xb64-coslr-120e_in1k.py'
_base_ = './repvgg-A0_8xb32_in1k.py'

model = dict(backbone=dict(arch='B1'), head=dict(in_channels=2048))
Original file line number Diff line number Diff line change
@@ -1,3 +1,3 @@
_base_ = './repvgg-A0_4xb64-coslr-120e_in1k.py'
_base_ = './repvgg-A0_8xb32_in1k.py'

model = dict(backbone=dict(arch='B1g2'), head=dict(in_channels=2048))
Original file line number Diff line number Diff line change
@@ -1,3 +1,3 @@
_base_ = './repvgg-A0_4xb64-coslr-120e_in1k.py'
_base_ = './repvgg-A0_8xb32_in1k.py'

model = dict(backbone=dict(arch='B1g4'), head=dict(in_channels=2048))
Loading

0 comments on commit 88e5ba2

Please sign in to comment.