pandas-validity is a Python library for the validation of pandas DataFrames. It provides a DataFrameValidator
class that serves as a context manager. Within this context, you can perform multiple validations and checks. Any encountered errors are collected and raised at the end of the process. The DataFrameValidator
raises a ValidationErrorsGroup
exception to summarize the errors.
You can easily install the latest released version using binary installers from the Python Package Index (PyPI):
pip install pandas-validity
import pandas as pd
import datetime
from pandas_validity import DataFrameValidator
# Create a sample DataFrame
df = pd.DataFrame(
{
"A": [1, 2, 3],
"B": ["a", None, "c"],
"C": [2.3, 4.5, 9.2],
"D": [
datetime.datetime(2023, 1, 1, 1),
datetime.datetime(2023, 1, 1, 2),
datetime.datetime(2023, 1, 1, 3),
],
}
)
# Define your expectations and data type mappings
expected_columns = ['A', 'B', 'C', 'E']
data_types_mapping = {
"A": 'float',
"D": 'datetime'
}
# Use DataFrameValidator for validation
with DataFrameValidator(df) as validator:
validator.is_empty()
validator.has_required_columns(expected_columns)
validator.has_no_redundant_columns(expected_columns)
validator.has_valid_data_types(data_types_mapping)
validator.has_no_missing_data()
Output:
Error occurred: (<class 'pandas_validity.exceptions.ValidationError'>) The dataframe has missing columns: ['E']
Error occurred: (<class 'pandas_validity.exceptions.ValidationError'>) The dataframe has redundant columns: ['D']
Error occurred: (<class 'pandas_validity.exceptions.ValidationError'>) Column 'A' has an invalid data type: 'int64'
Error occurred: (<class 'pandas_validity.exceptions.ValidationError'>) Found 1 missing value: [{'index': 1, 'column': 'B', 'value': None}]
+ Exception Group Traceback (most recent call last):
...
| pandas_validity.exceptions.ValidationErrorsGroup: Validation errors found: 4. (4 sub-exceptions)
+-+---------------- 1 ----------------
| pandas_validity.exceptions.ValidationError: The dataframe has missing columns: ['E']
+---------------- 2 ----------------
| pandas_validity.exceptions.ValidationError: The dataframe has redundant columns: ['D']
+---------------- 3 ----------------
| pandas_validity.exceptions.ValidationError: Column 'A' has an invalid data type: 'int64'
+---------------- 4 ----------------
| pandas_validity.exceptions.ValidationError: Found 1 missing value: [{'index': 1, 'column': 'B', 'value': None}]
+------------------------------------
The library supports the following data types for validation:
- predefined:
"str"
,"int"
,"float"
,"datetime"
,"bool"
- or any
Callable
that accepts a datatype/dtype
object and returns a boolean value to indicate the validation status - example:pd.api.types.is_string_dtype
Prerequisites: poetry for environment management
The source code is currently hosted on GitHub at ohmycoffe/pandas-validity. To get the development version:
git clone [email protected]:ohmycoffe/pandas-validity.git
To install the project and development dependencies:
make install
To run tests:
make test
To view all possible commands, use:
make help
This project is licensed under the terms of the MIT license.