Skip to content

Commit

Permalink
vendor libsecp256k1 so it doesn't depend on a shared library.
Browse files Browse the repository at this point in the history
  • Loading branch information
fiatjaf committed Dec 26, 2024
1 parent 95ddacb commit 46645ad
Show file tree
Hide file tree
Showing 74 changed files with 36,414 additions and 4 deletions.
23 changes: 23 additions & 0 deletions justfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
list:
@just --list

vendor-libsecp256k1:
#!/usr/bin/env fish
rm -r libsecp256k1
mkdir libsecp256k1
mkdir libsecp256k1/include
mkdir libsecp256k1/src
mkdir libsecp256k1/src/asm
mkdir libsecp256k1/src/modules
mkdir libsecp256k1/src/modules/extrakeys
mkdir libsecp256k1/src/modules/schnorrsig
wget https://api.github.com/repos/bitcoin-core/secp256k1/tarball/v0.6.0 -O libsecp256k1.tar.gz
tar -xvf libsecp256k1.tar.gz
rm libsecp256k1.tar.gz
cd bitcoin-core-secp256k1-*
for f in include/secp256k1.h include/secp256k1_ecdh.h include/secp256k1_ellswift.h include/secp256k1_extrakeys.h include/secp256k1_preallocated.h include/secp256k1_recovery.h include/secp256k1_schnorrsig.h src/asm/field_10x26_arm.s src/assumptions.h src/bench.c src/bench.h src/bench_ecmult.c src/bench_internal.c src/checkmem.h src/ecdsa.h src/ecdsa_impl.h src/eckey.h src/eckey_impl.h src/ecmult.h src/ecmult_compute_table.h src/ecmult_compute_table_impl.h src/ecmult_const.h src/ecmult_const_impl.h src/ecmult_gen.h src/ecmult_gen_compute_table.h src/ecmult_gen_compute_table_impl.h src/ecmult_gen_impl.h src/ecmult_impl.h src/field.h src/field_10x26.h src/field_10x26_impl.h src/field_5x52.h src/field_5x52_impl.h src/field_5x52_int128_impl.h src/field_impl.h src/group.h src/group_impl.h src/hash.h src/hash_impl.h src/hsort.h src/hsort_impl.h src/int128.h src/int128_impl.h src/int128_native.h src/int128_native_impl.h src/int128_struct.h src/int128_struct_impl.h src/modinv32.h src/modinv32_impl.h src/modinv64.h src/modinv64_impl.h src/modules/extrakeys/main_impl.h src/modules/schnorrsig/main_impl.h src/precompute_ecmult.c src/precompute_ecmult_gen.c src/precomputed_ecmult.c src/precomputed_ecmult.h src/precomputed_ecmult_gen.c src/precomputed_ecmult_gen.h src/scalar.h src/scalar_4x64.h src/scalar_4x64_impl.h src/scalar_8x32.h src/scalar_8x32_impl.h src/scalar_impl.h src/scalar_low.h src/scalar_low_impl.h src/scratch.h src/scratch_impl.h src/secp256k1.c src/selftest.h src/util.h
mv $f ../libsecp256k1/$f
end
cd ..
rm -r bitcoin-core-secp256k1-*
899 changes: 899 additions & 0 deletions libsecp256k1/include/secp256k1.h

Large diffs are not rendered by default.

63 changes: 63 additions & 0 deletions libsecp256k1/include/secp256k1_ecdh.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
#ifndef SECP256K1_ECDH_H
#define SECP256K1_ECDH_H

#include "secp256k1.h"

#ifdef __cplusplus
extern "C" {
#endif

/** A pointer to a function that hashes an EC point to obtain an ECDH secret
*
* Returns: 1 if the point was successfully hashed.
* 0 will cause secp256k1_ecdh to fail and return 0.
* Other return values are not allowed, and the behaviour of
* secp256k1_ecdh is undefined for other return values.
* Out: output: pointer to an array to be filled by the function
* In: x32: pointer to a 32-byte x coordinate
* y32: pointer to a 32-byte y coordinate
* data: arbitrary data pointer that is passed through
*/
typedef int (*secp256k1_ecdh_hash_function)(
unsigned char *output,
const unsigned char *x32,
const unsigned char *y32,
void *data
);

/** An implementation of SHA256 hash function that applies to compressed public key.
* Populates the output parameter with 32 bytes. */
SECP256K1_API const secp256k1_ecdh_hash_function secp256k1_ecdh_hash_function_sha256;

/** A default ECDH hash function (currently equal to secp256k1_ecdh_hash_function_sha256).
* Populates the output parameter with 32 bytes. */
SECP256K1_API const secp256k1_ecdh_hash_function secp256k1_ecdh_hash_function_default;

/** Compute an EC Diffie-Hellman secret in constant time
*
* Returns: 1: exponentiation was successful
* 0: scalar was invalid (zero or overflow) or hashfp returned 0
* Args: ctx: pointer to a context object.
* Out: output: pointer to an array to be filled by hashfp.
* In: pubkey: pointer to a secp256k1_pubkey containing an initialized public key.
* seckey: a 32-byte scalar with which to multiply the point.
* hashfp: pointer to a hash function. If NULL,
* secp256k1_ecdh_hash_function_sha256 is used
* (in which case, 32 bytes will be written to output).
* data: arbitrary data pointer that is passed through to hashfp
* (can be NULL for secp256k1_ecdh_hash_function_sha256).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdh(
const secp256k1_context *ctx,
unsigned char *output,
const secp256k1_pubkey *pubkey,
const unsigned char *seckey,
secp256k1_ecdh_hash_function hashfp,
void *data
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);

#ifdef __cplusplus
}
#endif

#endif /* SECP256K1_ECDH_H */
200 changes: 200 additions & 0 deletions libsecp256k1/include/secp256k1_ellswift.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,200 @@
#ifndef SECP256K1_ELLSWIFT_H
#define SECP256K1_ELLSWIFT_H

#include "secp256k1.h"

#ifdef __cplusplus
extern "C" {
#endif

/* This module provides an implementation of ElligatorSwift as well as a
* version of x-only ECDH using it (including compatibility with BIP324).
*
* ElligatorSwift is described in https://eprint.iacr.org/2022/759 by
* Chavez-Saab, Rodriguez-Henriquez, and Tibouchi. It permits encoding
* uniformly chosen public keys as 64-byte arrays which are indistinguishable
* from uniformly random arrays.
*
* Let f be the function from pairs of field elements to point X coordinates,
* defined as follows (all operations modulo p = 2^256 - 2^32 - 977)
* f(u,t):
* - Let C = 0xa2d2ba93507f1df233770c2a797962cc61f6d15da14ecd47d8d27ae1cd5f852,
* a square root of -3.
* - If u=0, set u=1 instead.
* - If t=0, set t=1 instead.
* - If u^3 + t^2 + 7 = 0, multiply t by 2.
* - Let X = (u^3 + 7 - t^2) / (2 * t)
* - Let Y = (X + t) / (C * u)
* - Return the first in [u + 4 * Y^2, (-X/Y - u) / 2, (X/Y - u) / 2] that is an
* X coordinate on the curve (at least one of them is, for any u and t).
*
* Then an ElligatorSwift encoding of x consists of the 32-byte big-endian
* encodings of field elements u and t concatenated, where f(u,t) = x.
* The encoding algorithm is described in the paper, and effectively picks a
* uniformly random pair (u,t) among those which encode x.
*
* If the Y coordinate is relevant, it is given the same parity as t.
*
* Changes w.r.t. the paper:
* - The u=0, t=0, and u^3+t^2+7=0 conditions result in decoding to the point
* at infinity in the paper. Here they are remapped to finite points.
* - The paper uses an additional encoding bit for the parity of y. Here the
* parity of t is used (negating t does not affect the decoded x coordinate,
* so this is possible).
*
* For mathematical background about the scheme, see the doc/ellswift.md file.
*/

/** A pointer to a function used by secp256k1_ellswift_xdh to hash the shared X
* coordinate along with the encoded public keys to a uniform shared secret.
*
* Returns: 1 if a shared secret was successfully computed.
* 0 will cause secp256k1_ellswift_xdh to fail and return 0.
* Other return values are not allowed, and the behaviour of
* secp256k1_ellswift_xdh is undefined for other return values.
* Out: output: pointer to an array to be filled by the function
* In: x32: pointer to the 32-byte serialized X coordinate
* of the resulting shared point (will not be NULL)
* ell_a64: pointer to the 64-byte encoded public key of party A
* (will not be NULL)
* ell_b64: pointer to the 64-byte encoded public key of party B
* (will not be NULL)
* data: arbitrary data pointer that is passed through
*/
typedef int (*secp256k1_ellswift_xdh_hash_function)(
unsigned char *output,
const unsigned char *x32,
const unsigned char *ell_a64,
const unsigned char *ell_b64,
void *data
);

/** An implementation of an secp256k1_ellswift_xdh_hash_function which uses
* SHA256(prefix64 || ell_a64 || ell_b64 || x32), where prefix64 is the 64-byte
* array pointed to by data. */
SECP256K1_API const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_prefix;

/** An implementation of an secp256k1_ellswift_xdh_hash_function compatible with
* BIP324. It returns H_tag(ell_a64 || ell_b64 || x32), where H_tag is the
* BIP340 tagged hash function with tag "bip324_ellswift_xonly_ecdh". Equivalent
* to secp256k1_ellswift_xdh_hash_function_prefix with prefix64 set to
* SHA256("bip324_ellswift_xonly_ecdh")||SHA256("bip324_ellswift_xonly_ecdh").
* The data argument is ignored. */
SECP256K1_API const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_bip324;

/** Construct a 64-byte ElligatorSwift encoding of a given pubkey.
*
* Returns: 1 always.
* Args: ctx: pointer to a context object
* Out: ell64: pointer to a 64-byte array to be filled
* In: pubkey: pointer to a secp256k1_pubkey containing an
* initialized public key
* rnd32: pointer to 32 bytes of randomness
*
* It is recommended that rnd32 consists of 32 uniformly random bytes, not
* known to any adversary trying to detect whether public keys are being
* encoded, though 16 bytes of randomness (padded to an array of 32 bytes,
* e.g., with zeros) suffice to make the result indistinguishable from
* uniform. The randomness in rnd32 must not be a deterministic function of
* the pubkey (it can be derived from the private key, though).
*
* It is not guaranteed that the computed encoding is stable across versions
* of the library, even if all arguments to this function (including rnd32)
* are the same.
*
* This function runs in variable time.
*/
SECP256K1_API int secp256k1_ellswift_encode(
const secp256k1_context *ctx,
unsigned char *ell64,
const secp256k1_pubkey *pubkey,
const unsigned char *rnd32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);

/** Decode a 64-bytes ElligatorSwift encoded public key.
*
* Returns: always 1
* Args: ctx: pointer to a context object
* Out: pubkey: pointer to a secp256k1_pubkey that will be filled
* In: ell64: pointer to a 64-byte array to decode
*
* This function runs in variable time.
*/
SECP256K1_API int secp256k1_ellswift_decode(
const secp256k1_context *ctx,
secp256k1_pubkey *pubkey,
const unsigned char *ell64
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);

/** Compute an ElligatorSwift public key for a secret key.
*
* Returns: 1: secret was valid, public key was stored.
* 0: secret was invalid, try again.
* Args: ctx: pointer to a context object
* Out: ell64: pointer to a 64-byte array to receive the ElligatorSwift
* public key
* In: seckey32: pointer to a 32-byte secret key
* auxrnd32: (optional) pointer to 32 bytes of randomness
*
* Constant time in seckey and auxrnd32, but not in the resulting public key.
*
* It is recommended that auxrnd32 contains 32 uniformly random bytes, though
* it is optional (and does result in encodings that are indistinguishable from
* uniform even without any auxrnd32). It differs from the (mandatory) rnd32
* argument to secp256k1_ellswift_encode in this regard.
*
* This function can be used instead of calling secp256k1_ec_pubkey_create
* followed by secp256k1_ellswift_encode. It is safer, as it uses the secret
* key as entropy for the encoding (supplemented with auxrnd32, if provided).
*
* Like secp256k1_ellswift_encode, this function does not guarantee that the
* computed encoding is stable across versions of the library, even if all
* arguments (including auxrnd32) are the same.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ellswift_create(
const secp256k1_context *ctx,
unsigned char *ell64,
const unsigned char *seckey32,
const unsigned char *auxrnd32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);

/** Given a private key, and ElligatorSwift public keys sent in both directions,
* compute a shared secret using x-only Elliptic Curve Diffie-Hellman (ECDH).
*
* Returns: 1: shared secret was successfully computed
* 0: secret was invalid or hashfp returned 0
* Args: ctx: pointer to a context object.
* Out: output: pointer to an array to be filled by hashfp.
* In: ell_a64: pointer to the 64-byte encoded public key of party A
* (will not be NULL)
* ell_b64: pointer to the 64-byte encoded public key of party B
* (will not be NULL)
* seckey32: pointer to our 32-byte secret key
* party: boolean indicating which party we are: zero if we are
* party A, non-zero if we are party B. seckey32 must be
* the private key corresponding to that party's ell_?64.
* This correspondence is not checked.
* hashfp: pointer to a hash function.
* data: arbitrary data pointer passed through to hashfp.
*
* Constant time in seckey32.
*
* This function is more efficient than decoding the public keys, and performing
* ECDH on them.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ellswift_xdh(
const secp256k1_context *ctx,
unsigned char *output,
const unsigned char *ell_a64,
const unsigned char *ell_b64,
const unsigned char *seckey32,
int party,
secp256k1_ellswift_xdh_hash_function hashfp,
void *data
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(7);

#ifdef __cplusplus
}
#endif

#endif /* SECP256K1_ELLSWIFT_H */
Loading

0 comments on commit 46645ad

Please sign in to comment.