Skip to content

mohdshadaab/DeepFashion

 
 

Repository files navigation

DEEP FASHION

Setup Environment

# Virtual environment (optional)
sudo apt install -y virtualenv

# Tensorflow (optional)
sudo apt-get install python-pip python-dev python-virtualenv # for Python 2.7
virtualenv --system-site-packages tensorflow121_py27_gpu # for Python 2.7
source tensorflow121_py27_gpu/bin/activate
pip install --upgrade tensorflow-gpu  # for Python 2.7 and GPU

# Dependencies
sudo apt install -y python-tk
pip install -r requirements.txt 

Download DeepFashion Dataset

# http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion/AttributePrediction.html
./dataset_download.sh

# The directory structure after downloading and extracting dataset:
# fashion_data/
# ---Anno
# ------list_attr_cloth.txt
# ------list_attr_img.txt
# ------list_bbox.txt
# ------list_category_cloth.txt
# ------list_category_img.txt
# ------list_landmarks.txt
# ---Eval
# ------list_eval_partition.txt
# ---Img
# ------img

Create Dataset

# For images in fashion_data, apply selective search algo to find ROI/bounding boxes. Crop and copy these ROI inside dataset
python dataset_create.py

Train

python train.py

Predict

python predict.py

Misc

dataset - Contains images used for training, validation and testing.

output - Contains trained weights and bottleneck features.

logs - Contains logs and events used by tensorboard.

MODEL

						->	Classification Head (Categories)
InputImage	->	VGG16 + Layers	--
						->	Regression Head	(Confidnence in the Classification head prediction)

RESULTS

alt text

Acknowledgment

About

Apparel detection using deep learning

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.3%
  • Shell 1.7%