Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Finish intuitionizing section "Groups: Definition and basic properties" #4488

Merged
merged 49 commits into from
Dec 26, 2024

Conversation

jkingdon
Copy link
Contributor

Most of this intuitionizes fairly easily, with the main exception being theorems which refer to concepts which aren't yet developed in iset.mm.

@jkingdon
Copy link
Contributor Author

I'm planning on rebasing this (because a number of changes have been merged since it was created), and then merging if the tests pass.

Includes syl5bb comment from set.mm.
This is grpinvpropd from set.mm with set existence conditions added.
The proof is similar to the set.mm proof.
Stated as in set.mm.  The proof needs a small amount of intuitionizing
but is basically the set.mm proof.
This is dfgrp3 from set.mm with non-empty changed to inhabited.  The
proof needs some intuitionizing for that change but is basically the
set.mm proof.

Includes lemma dfgrp3mlem which is dfgrp3lem from set.mm with a similar
change.

Minimize dfgrp3 in set.mm.
This is dfgrp3e from set.mm with non-empty changed to inhabited.  The
proof needs some intuitionizing but is basically the set.mm proof.
Stated as in set.mm.  The proof needs a fair bit of intuitionizing
around set existence but follows basically the structure of the set.mm
proof.
This is grpsubpropd from set.mm with set exixtence hypotheses.  The
proof needs some intuitionizing but is similar to the set.mm proof.
Stated as in set.mm.  The proof needs some intuitionizing but is
basically the set.mm proof.
Stated as in set.mm.  The proof needs some intuitionizing but is
basically the set.mm proof.
Stated as in set.mm.  The set.mm proof works intuitionistically but
needs minor changes to reflect differences in opelres/opelresi between
set.mm and iset.mm.
Stated as in set.mm.  The proof needs some intuitionizing but is
basically the set.mm proof.
This is prdsinvlem , prdsgrpd , prdsinvgd
This is pwsgrp , pwsinvg , pwssub
This is imasgrp2 , imasgrp , imasgrpf1 .
Copied from set.mm without change.  The $d B x $. is not necessary for
the proof, but is copied to keep iset.mm consistent with set.mm.
@jkingdon jkingdon merged commit fda590c into metamath:develop Dec 26, 2024
10 checks passed
@jkingdon jkingdon deleted the grplmulf1o branch December 26, 2024 18:28
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
Status: Done
Development

Successfully merging this pull request may close these issues.

2 participants