Skip to content

Automatic forest fire mapping from aerial images (Unet with a pre-trained InceptionResNetV2 encoder)

License

Notifications You must be signed in to change notification settings

lucaordronneau/ey-2021-fire-mapping

Repository files navigation

Challenge 1 : Fire mapping - EY

Ordronneau Luca - Reberga Louis - Moncoutie Johan - Ettarian Julian

Segmentation

alt text

Project Architecture :

Challenge 1 : Fire mapping - Ordronneau - Reberga - Moncoutie - Ettarian
│   README.md
│   english-report.pdf (english)
│   english-presentation-slides.pdf (english)  
│   challenge1-video-abstract.mp4 (english)
│   french-slides.pdf (french)
│
└─── code
    │   data.ipynb
    │   InceptionResnetV2.ipynb
    |   test_model.ipynb
    │
    └─── submission
    |   │   InceptionResNetV2...ellipse.csv
    |
    └─── model
    │   │   InceptionResNetV2_413_semi_final.h5
    |
    └─── data
    │   │   X_Y_TRAIN_413_semi_final.npz
    │   │   X_TEST_413_semi_final.npy

code : Folder with all code files as well as data, model...

  • data.ipynb : Construction of the dataset (polygon and linescan matches, pre processing)
  • InceptionResNetV2.ipynb : Creation of the model and first display of predictions.
  • test_model.ipynb : Testing the model with morphological operations just before creating the submission file.
  • model : Folder for the test model
    • InceptionResNetV2_413_semi_final.h5 : Model
  • data : Folder for dataset
    • X_Y_TRAIN_413_semi_final.npz : Training data
    import numpy as np
    data = np.load('X_Y_TRAIN_413_semi_final.npz')
    X_train = data['a']
    Y_train = data['b']
    
    • X_TEST_413_semi_final.npy : Testing data
    import numpy as np
    X_test = np.load('X_TEST_413_semi_final.npy')
    
  • submission : Folder for submission file
    • InceptionResNetV2_413_semi_final_open_3_iter_1_close_16_iter_1_0_1_ellipse.csv : CSV file example for submission

About

Automatic forest fire mapping from aerial images (Unet with a pre-trained InceptionResNetV2 encoder)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published