forked from datajoint/element-calcium-imaging
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' of https://github.com/dj-sciops/fmi_luthi_element…
…-calcium-imaging into fmi_luthi
- Loading branch information
Showing
5 changed files
with
581 additions
and
296 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,370 @@ | ||
import importlib | ||
import inspect | ||
import pathlib | ||
from collections.abc import Callable | ||
from datetime import datetime | ||
import re | ||
|
||
import datajoint as dj | ||
import numpy as np | ||
from element_interface.utils import dict_to_uuid, find_full_path, find_root_directory | ||
|
||
from . import scan | ||
|
||
log = dj.logger | ||
|
||
schema = dj.schema() | ||
|
||
imaging = None | ||
|
||
|
||
def activate( | ||
schema_name, | ||
*, | ||
imaging_module, | ||
create_schema=True, | ||
create_tables=True, | ||
): | ||
""" | ||
activate(schema_name, *, imaging_module, create_schema=True, create_tables=True) | ||
:param schema_name: schema name on the database server to activate the `field_processing` schema | ||
:param imaging_module: the activated imaging element for which this `processing` schema will be downstream from | ||
:param create_schema: when True (default), create schema in the database if it does not yet exist. | ||
:param create_tables: when True (default), create tables in the database if they do not yet exist. | ||
""" | ||
global imaging | ||
imaging = imaging_module | ||
schema.activate( | ||
schema_name, | ||
create_schema=create_schema, | ||
create_tables=create_tables, | ||
add_objects=imaging.__dict__, | ||
) | ||
imaging.Processing.key_source -= FieldPreprocessing.key_source.proj() | ||
|
||
|
||
# ---------------- Multi-field Processing (per-field basis) ---------------- | ||
|
||
|
||
@schema | ||
class FieldPreprocessing(dj.Computed): | ||
definition = """ | ||
-> imaging.ProcessingTask | ||
--- | ||
execution_time: datetime # datetime of the start of this step | ||
execution_duration: float # (hour) execution duration | ||
""" | ||
|
||
class Field(dj.Part): | ||
definition = """ | ||
-> master | ||
-> scan.ScanInfo.Field | ||
--- | ||
params: longblob # parameter set for this run | ||
processing_output_dir: varchar(1000) # Output directory of the processed scan relative to root data directory | ||
""" | ||
|
||
@property | ||
def key_source(self): | ||
""" | ||
Find ProcessingTask entries with method = "suite2p" and roi > 0 or method = "caimain" and depths > 1 | ||
""" | ||
ks = ( | ||
imaging.ProcessingTask | ||
* scan.ScanInfo.proj("nrois", "nfields") | ||
* imaging.ProcessingParamSet.proj("processing_method") | ||
& "task_mode = 'trigger'" | ||
) & "nfields > 1" | ||
ks &= "(processing_method = 'suite2p' AND nrois > 0) OR (processing_method = 'caiman' AND nrois = 0)" | ||
return ks - imaging.Processing.proj() | ||
|
||
def make(self, key): | ||
execution_time = datetime.utcnow() | ||
processed_root_data_dir = scan.get_processed_root_data_dir() | ||
|
||
output_dir = (imaging.ProcessingTask & key).fetch1("processing_output_dir") | ||
|
||
if not output_dir: | ||
output_dir = imaging.ProcessingTask.infer_output_dir( | ||
key, relative=True, mkdir=True | ||
) | ||
# update processing_output_dir | ||
imaging.ProcessingTask.update1( | ||
{**key, "processing_output_dir": output_dir.as_posix()} | ||
) | ||
|
||
try: | ||
output_dir = find_full_path(processed_root_data_dir, output_dir) | ||
except FileNotFoundError: | ||
output_dir = processed_root_data_dir / output_dir | ||
output_dir.mkdir(parents=True, exist_ok=True) | ||
|
||
method, params = ( | ||
imaging.ProcessingTask * imaging.ProcessingParamSet & key | ||
).fetch1("processing_method", "params") | ||
acq_software = (scan.Scan & key).fetch1("acq_software") | ||
|
||
field_ind = (scan.ScanInfo.Field & key).fetch("field_idx") | ||
sampling_rate, ndepths, nchannels, nfields, nrois = ( | ||
scan.ScanInfo & key | ||
).fetch1("fps", "ndepths", "nchannels", "nfields", "nrois") | ||
|
||
if method == "caiman" and acq_software == "PrairieView": | ||
from element_interface.prairie_view_loader import ( | ||
PrairieViewMeta, | ||
) | ||
|
||
image_file = (scan.ScanInfo.ScanFile & key).fetch("file_path", limit=1)[0] | ||
pv_dir = find_full_path(scan.get_imaging_root_data_dir(), image_file).parent | ||
PVmeta = PrairieViewMeta(pv_dir) | ||
|
||
channel = ( | ||
params.get("channel_to_process", 0) | ||
if PVmeta.meta["num_channels"] > 1 | ||
else PVmeta.meta["channels"][0] | ||
) | ||
|
||
field_processing_tasks = [] | ||
for field_idx, plane_idx in zip(field_ind, PVmeta.meta["plane_indices"]): | ||
pln_output_dir = output_dir / f"pln{plane_idx}_chn{channel}" | ||
pln_output_dir.mkdir(parents=True, exist_ok=True) | ||
|
||
prepared_input_dir = output_dir.parent / "prepared_input" | ||
prepared_input_dir.mkdir(exist_ok=True) | ||
|
||
image_files = [ | ||
PVmeta.write_single_bigtiff( | ||
plane_idx=plane_idx, | ||
channel=channel, | ||
output_dir=prepared_input_dir, | ||
caiman_compatible=True, | ||
) | ||
] | ||
|
||
field_processing_tasks.append( | ||
{ | ||
**key, | ||
"field_idx": field_idx, | ||
"params": { | ||
**params, | ||
"extra_dj_params": { | ||
"channel": channel, | ||
"plane_idx": plane_idx, | ||
"image_files": [ | ||
f.relative_to(processed_root_data_dir).as_posix() | ||
for f in image_files | ||
], | ||
}, | ||
}, | ||
"processing_output_dir": pln_output_dir.relative_to( | ||
processed_root_data_dir | ||
).as_posix(), | ||
} | ||
) | ||
elif method == "suite2p" and acq_software == "ScanImage" and nrois > 0: | ||
import scanreader | ||
from suite2p import default_ops, io | ||
|
||
image_files = (scan.ScanInfo.ScanFile & key).fetch("file_path") | ||
image_files = [ | ||
find_full_path(scan.get_imaging_root_data_dir(), image_file).as_posix() | ||
for image_file in image_files | ||
] | ||
|
||
scan_ = scanreader.read_scan(image_files) | ||
|
||
ops = {**default_ops(), **params} | ||
|
||
ops["save_path0"] = output_dir.as_posix() | ||
ops["save_folder"] = "suite2p" | ||
ops["fs"] = sampling_rate | ||
ops["nplanes"] = ndepths | ||
ops["nchannels"] = nchannels | ||
ops["input_format"] = pathlib.Path(image_files[0]).suffix[1:] | ||
ops["data_path"] = [pathlib.Path(image_files[0]).parent.as_posix()] | ||
ops["tiff_list"] = [f for f in image_files] | ||
ops["force_sktiff"] = False | ||
|
||
ops.update( | ||
{ | ||
"mesoscan": True, | ||
"input_format": "mesoscan", | ||
"nrois": nfields, | ||
"dx": [], # x-offset for each field | ||
"dy": [], # y-offset for each field | ||
"slices": [], # plane index for each field | ||
"lines": [], # row indices for each field | ||
} | ||
) | ||
for field_idx, field_info in enumerate(scan_.fields): | ||
ops["dx"].append(field_info.xslices[0].start) | ||
ops["dy"].append(field_info.yslices[0].start) | ||
ops["slices"].append(field_info.slice_id) | ||
ops["lines"].append( | ||
np.arange(field_info.yslices[0].start, field_info.yslices[0].stop) | ||
) | ||
|
||
# generate binary files for each field | ||
save_folder = output_dir / ops["save_folder"] | ||
save_folder.mkdir(exist_ok=True) | ||
_ = io.mesoscan_to_binary(ops.copy()) | ||
|
||
ops_paths = [f for f in save_folder.rglob("plane*/ops.npy")] | ||
assert len(ops_paths) == nfields | ||
|
||
field_processing_tasks = [] | ||
for ops_path in ops_paths: | ||
ops = np.load(ops_path, allow_pickle=True).item() | ||
ops["extra_dj_params"] = { | ||
"ops_path": ops_path.relative_to( | ||
processed_root_data_dir | ||
).as_posix(), | ||
"field_idx": int( | ||
re.search(r"plane(\d+)", ops_path.parent.name).group(1) | ||
), | ||
} | ||
field_processing_tasks.append( | ||
{ | ||
**key, | ||
"field_idx": ops["extra_dj_params"]["field_idx"], | ||
"params": ops, | ||
"processing_output_dir": ops_path.parent.relative_to( | ||
processed_root_data_dir | ||
).as_posix(), | ||
} | ||
) | ||
else: | ||
raise NotImplementedError( | ||
f"Field processing for {acq_software} scans with {method} is not yet supported in this table." | ||
) | ||
|
||
exec_dur = (datetime.utcnow() - execution_time).total_seconds() / 3600 | ||
self.insert1( | ||
{ | ||
**key, | ||
"execution_time": execution_time, | ||
"execution_duration": exec_dur, | ||
} | ||
) | ||
self.Field.insert(field_processing_tasks) | ||
|
||
|
||
@schema | ||
class FieldProcessing(dj.Computed): | ||
definition = """ | ||
-> FieldPreprocessing.Field | ||
--- | ||
execution_time: datetime # datetime of the start of this step | ||
execution_duration: float # (hour) execution duration | ||
""" | ||
|
||
def make(self, key): | ||
execution_time = datetime.utcnow() | ||
processed_root_data_dir = scan.get_processed_root_data_dir() | ||
|
||
output_dir, params = (FieldPreprocessing.Field & key).fetch1( | ||
"processing_output_dir", "params" | ||
) | ||
extra_params = params.pop("extra_dj_params", {}) | ||
output_dir = find_full_path(processed_root_data_dir, output_dir) | ||
|
||
acq_software = (scan.Scan & key).fetch1("acq_software") | ||
method = (imaging.ProcessingParamSet * imaging.ProcessingTask & key).fetch1( | ||
"processing_method" | ||
) | ||
sampling_rate = (scan.ScanInfo & key).fetch1("fps") | ||
|
||
if acq_software == "PrairieView" and method == "caiman": | ||
from element_interface.run_caiman import run_caiman | ||
|
||
file_paths = [ | ||
find_full_path(processed_root_data_dir, f) | ||
for f in extra_params["image_files"] | ||
] | ||
|
||
run_caiman( | ||
file_paths=file_paths, | ||
parameters=params, | ||
sampling_rate=sampling_rate, | ||
output_dir=output_dir.as_posix(), | ||
is3D=False, | ||
) | ||
elif acq_software == "ScanImage" and method == "suite2p": | ||
from suite2p.run_s2p import run_plane | ||
|
||
ops_path = find_full_path(processed_root_data_dir, extra_params["ops_path"]) | ||
run_plane(params, ops_path=ops_path) | ||
else: | ||
raise NotImplementedError( | ||
f"Field processing for {acq_software} scans with {method} is not yet supported in this table." | ||
) | ||
|
||
exec_dur = (datetime.utcnow() - execution_time).total_seconds() / 3600 | ||
self.insert1( | ||
{ | ||
**key, | ||
"execution_time": execution_time, | ||
"execution_duration": exec_dur, | ||
} | ||
) | ||
|
||
|
||
@schema | ||
class FieldPostProcessing(dj.Computed): | ||
definition = """ | ||
-> FieldPreprocessing | ||
--- | ||
execution_time: datetime # datetime of the start of this step | ||
execution_duration: float # (hour) execution duration | ||
""" | ||
|
||
@property | ||
def key_source(self): | ||
""" | ||
Find FieldPreprocessing entries that have finished processing for all fields | ||
""" | ||
per_plane_proc = ( | ||
FieldPreprocessing.aggr( | ||
FieldPreprocessing.Field.proj(), | ||
field_count="count(*)", | ||
keep_all_rows=True, | ||
) | ||
* FieldPreprocessing.aggr( | ||
FieldProcessing.proj(), | ||
finished_field_count="count(*)", | ||
keep_all_rows=True, | ||
) | ||
& "field_count = finished_field_count" | ||
) | ||
return FieldPreprocessing & per_plane_proc | ||
|
||
def make(self, key): | ||
execution_time = datetime.utcnow() | ||
method, params = ( | ||
imaging.ProcessingTask * imaging.ProcessingParamSet & key | ||
).fetch1("processing_method", "params") | ||
|
||
if method == "suite2p" and params.get("combined", True): | ||
from suite2p import io | ||
|
||
output_dir = (imaging.ProcessingTask & key).fetch1("processing_output_dir") | ||
output_dir = find_full_path(scan.get_imaging_root_data_dir(), output_dir) | ||
|
||
io.combined(output_dir / "suite2p", save=True) | ||
|
||
exec_dur = (datetime.utcnow() - execution_time).total_seconds() / 3600 | ||
self.insert1( | ||
{ | ||
**key, | ||
"execution_time": execution_time, | ||
"execution_duration": exec_dur, | ||
} | ||
) | ||
imaging.Processing.insert1( | ||
{ | ||
**key, | ||
"processing_time": datetime.utcnow(), | ||
"package_version": "", | ||
}, | ||
allow_direct_insert=True, | ||
) |
Oops, something went wrong.