Skip to content

kohonda/f1tenth_rl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

F1Tenth RL Example

This is a simple example of reinforcement learning by stable-baselines3 for the F1Tenth racing car. The environment is based on the F1Tenth Gym

cartpole

Tested Native Environment

  • Ubuntu Focal 20.04 (LTS)
  • NVIDIA Driver 510 or later due to PyTorch 2.x

Installation

Docker Installation

Install Docker

Installation guide

# Install from get.docker.com
curl -fsSL https://get.docker.com -o get-docker.sh
sudo sh get-docker.sh
sudo groupadd docker
sudo usermod -aG docker $USER

Setup GPU for Docker

Installation guide

curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
  && curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
    sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
    sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list 

sudo apt-get update

sudo apt-get install -y nvidia-container-toolkit nvidia-container-runtime

sudo nvidia-ctk runtime configure --runtime=docker

sudo systemctl restart docker

Setup with Docker

# build container (with GPU support)
make build-gpu
# or build container (without GPU support)
# make build-cpu

Open remote container via Vscode (Recommend)

  1. Open the folder using vscode
  2. Ctrl+P and select 'devcontainer rebuild and reopen in container' Then, you can skip the following commands
# Or Run container via terminal (with GPU support)
make bash-gpu
# [Optional] Run container via terminal (without GPU support)
# make bash-cpu

How to train and run

Train

cd scripts
python3 train.py

Then, you can find the trained model in scripts/models/

Run (Need your trained model)

cd scripts
python3 run.py <path_to_model>