Skip to content

A simplified implementation of EinsumNetworks in PyTorch.

License

Notifications You must be signed in to change notification settings

julianStreibel/simple-einet

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Simple EinsumNetworks Implementation

This repository contains code for my personal, simplistic, EinsumNetworks implementation.

For a speed benchmark comparison against the official EinsumNetworks implementation, check out benchmark.md (short: simple-einet is faster in all dimensions except the input-channel size but scales similar to EinsumNetworks).

PyTorch Lightning Training

The main_pl.py script offers PyTorch-Lightning based training for discriminative and generative Einets.

Classification on MNIST examples:

python main_pl.py dataset=mnist batch_size=128 epochs=100 dist=normal D=5 I=32 S=32 R=8 lr=0.001 gpu=0 classification=true 

Generative learning on MNIST:

python main_pl.py dataset=mnist D=3 I=10 R=1 S=10 lr=0.1 dist=binomial epochs=10 batch_size=128

MNIST Samples

Installation

git clone [email protected]:braun-steven/simple-einet.git
cd simple-einet
pip install .

# Or if you plan to edit the files after installation:
pip install -e .

Usage Example

import torch
from simple_einet.distributions import RatNormal
from simple_einet.einet import Einet
from simple_einet.einet import EinetConfig

torch.manual_seed(0)

# Input dimensions
in_features = 4
batchsize = 5
out_features = 3

# Create input sample
x = torch.randn(batchsize, in_features)

# Construct Einet
einet = Einet(EinetConfig(num_features=in_features, depth=2, num_sums=2, num_channels=1, num_leaves=3, num_repetitions=3, num_classes=out_features, dropout=0.0, leaf_type=RatNormal, leaf_kwargs={"min_sigma": 1e-5, "max_sigma": 1.0},))

# Compute log-likelihoods
lls = einet(x)
print(f"lls.shape: {lls.shape}")
print(f"lls: \n{lls}")

# Optimize Einet parameters (weights and leaf params)
optim = torch.optim.Adam(einet.parameters(), lr=0.001)

for _ in range(1000):
    optim.zero_grad()

    # Forward pass: compute log-likelihoods
    lls = einet(x)

    # Backprop negative log-likelihood loss
    nlls = -1 * lls.sum()
    nlls.backward()

    # Update weights
    optim.step()

# Construct samples
samples = einet.sample(2)
print(f"samples.shape: {samples.shape}")
print(f"samples: \n{samples}")

Citing EinsumNetworks

If you use EinsumNetworks in your publications, please cite the official EinsumNetworks paper.

@inproceedings{pmlr-v119-peharz20a,
  title = {Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits},
  author = {Peharz, Robert and Lang, Steven and Vergari, Antonio and Stelzner, Karl and Molina, Alejandro and Trapp, Martin and Van Den Broeck, Guy and Kersting, Kristian and Ghahramani, Zoubin},
  booktitle = {Proceedings of the 37th International Conference on Machine Learning},
  pages = {7563--7574},
  year = {2020},
  editor = {III, Hal Daumé and Singh, Aarti},
  volume = {119},
  series = {Proceedings of Machine Learning Research},
  month = {13--18 Jul},
  publisher = {PMLR},
  pdf = {http://proceedings.mlr.press/v119/peharz20a/peharz20a.pdf},
  url = {http://proceedings.mlr.press/v119/peharz20a.html},
  code = {https://github.com/cambridge-mlg/EinsumNetworks},
}

If you use this software, please cite it as below.

@software{braun2021simple-einet,
author = {Braun, Steven},
title = {{Simple-einet: An EinsumNetworks Implementation}},
url = {https://github.com/braun-steven/simple-einet},
version = {0.0.1},
}

About

A simplified implementation of EinsumNetworks in PyTorch.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 86.7%
  • Python 13.3%