Skip to content

jiangzihanict/AIBench

Repository files navigation

AI Component Benchmark

To Do List (10/15)

  • 1. Image classification (by xingw)
  • 2. Image generation (by xingw)
  • 3. Text-to-Text Translation (by cjn)
  • 4. Image-to-Text (by xingw & cjn)
  • 5. Image-to-Image (by xingw)
  • 6. Speech-to-Text
  • 7. Face embedding (by xingw)
  • 8. Object detection (by xingw)
  • 9. Recommendation (by cjn)
  • 10. PageRank (by cjn)
  • 11. Graph Model (by xingw)
  • 12. Clustering
  • 13. Classification
  • 14. Feature Exaction (in progress)
  • 15. Search Engine Indexing (in progress)
# Name Algorithm Dataset Tensorflow Caffe PyTorch Keras
1 Image Classification ResNet20/ResNet32 CIFAR-10 ✔️
2 Image Generation WassersteinGAN LSUN ✔️
3 Text2Text Attention WMT English-German ✔️
4 Image2Text InceptionV3+LSTM MS COCO2014 ✔️
5 Image2Image CycleGAN Cityscapes ✔️
6 Speech2Text Deep Speech 2 LibriSpeech
7 Face Embedding facenet CASIA-WebFace/VGGFace2 ✔️
8 Object Detection Faster R-CNN Pascal VOC2007/MS COCO2014 ✔️
9 Recommendation Probabilistic MF MovieLens ml-100k/GroupLens
10 PageRank PageRank Google Web Graph
11 Graph Model LDA Wikipedia English articles
12 Clustering K-Means Facebook Social Network
13 Classification Native Bayes Classification Amazon Movie Review
14 Feature Exaction SIFT ImageNet
15 Search Engine Indexing Inverted Index Wikipedia English articles

Each component benchmark is specified with a problem statement, one or more dataset, algorithms, involved data motifs, implementations and their contributors.

1. Image classification

Workloads type: AI
Application domains:
Dataset: Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M. S.; Berg, A. C.; Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge, International Journal of Computer Vision (IJCV).
Algorithm: He, K.; Zhang, X.; Ren, S; Sun, J. (2015), 'Deep Residual Learning for Image Recognition', CoRR abs/1512.03385.
Involved data motifs:
Software stacks:
Implementation Contributors:

2. Image generation

Workloads type: AI
Application domains:
Dataset: Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. LSUN: Construction of a large-scale image dataset using deep learning with humans in the loop. Corr, abs/1506.03365, 2015.
Algorithm: Arjovsky, Martin, Chintala, Soumith, and Bottou, L´eon. Wasserstein gan. arXiv preprint arXiv:1701.07875, 2017.
Involved data motifs:
Software stacks:
Implementation Contributors:
References:

  1. LSUN official webpage
  2. Github fyu/lsun

3. Text-to-Text Translation

Workloads type: AI
Application domains:
Dataset: WMT English-German from Bojar, O.; Buck, C.; Federmann, C.; Haddow, B.; Koehn, P.; Monz, C.; Post, M.; Specia, L., ed. (2014), Proceedings of the Ninth Workshop on Statistical Machine Translation, Association for Computational Linguistics, Baltimore, Maryland, USA.
Algorithm: Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, L.; Polosukhin, I. (2017), 'Attention Is All You Need', CoRR abs/1706.03762.
Involved data motifs:
Software stacks:
Implementation Contributors:

4. Image-to-Text

Workloads type: AI
Application domains:
Dataset: MS COCO dataset, http://cocodataset.org/
Algorithm: "Show and Tell: Lessons learned from the 2015 MSCOCO Image Captioning Challenge." Oriol Vinyals, Alexander Toshev, Samy Bengio, Dumitru Erhan. IEEE transactions on pattern analysis and machine intelligence (2016).
Involved data motifs:
Software stacks:
Implementation Contributors:

5. Image-to-Image

Workloads type: AI
Application domains:
Dataset: M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic urban scene understanding. In CVPR, 2016
Algorithm: Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
Involved data motifs:
Software stacks:
Implementation Contributors:

6. Speech-to-Text

Workloads type: AI
Application domains:
Dataset: Panayotov, V.; Chen, G.; Povey, D.; Khudanpur, S. (2015), Librispeech: An ASR corpus based on public domain audio books, in '2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)', pp. 5206-5210.
Algorithm: Amodei, D.; Anubhai, R.; Battenberg, E.; Case, C.; Casper, J.; Catanzaro, B.; Chen, J.; Chrzanowski, M.; Coates, A.; Diamos, G.; Elsen, E.; Engel, J.; Fan, L.; Fougner, C.; Han, T.; Hannun, A. Y.; Jun, B.; LeGresley, P.; Lin, L.; Narang, S.; Ng, A. Y.; Ozair, S.; Prenger, R.; Raiman, J.; Satheesh, S.; Seetapun, D.; Sengupta, S.; Wang, Y.; Wang, Z.; Wang, C.; Xiao, B.; Yogatama, D.; Zhan, J.; Zhu, Z. (2015), 'Deep Speech 2: End-to-End Speech Recognition in English and Mandarin', CoRR abs/1512.02595.
Involved data motifs:
Software stacks:
Implementation Contributors:

7. Face embedding

Workloads type: AI
Application domains:
Dataset: G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst, October 2007. 5
Algorithm: FaceNet: A Unified Embedding for Face Recognition and Clustering
Involved data motifs:
Software stacks:
Implementation Contributors:

8. Object detection

Workloads type: AI
Application domains:
Dataset: Lin, T.-Y.; Maire, M.; Belongie, S. J.; Bourdev, L. D.; Girshick, R. B.; Hays, J.; Perona, P.; Ramanan, D.; Dollбr, P.; Zitnick, C. L. (2014), 'Microsoft COCO: Common Objects in Context', CoRR abs/1405.0312.
Algorithm: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Involved data motifs:
Software stacks:
Implementation Contributors:

9. Recommendation

Workloads type: AI
Application domains:
Dataset: Harper, F. M.; Konstan, J. A. (2015), 'The MovieLens Datasets: History and Context', ACM Trans. Interact. Intell. Syst. 5(4), 19:1--19:19.
Algorithm: Koren, Y., Bell, R.M., Volinsky, C. Matrix factorization techniques for recommender systems. IEEE Computer 42(8), 30–37 (2009)
Involved data motifs:
Software stacks:
Implementation Contributors:

10. PageRank

Workloads type: Graph Analytics
Application domains:
Dataset: Google web graph. http://snap.stanford.edu/data/web-Google.htm
Algorithm: L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing order to the web. Technical report, Stanford University, Stanford, CA, 1998. 17, 18, 88
Involved data motifs:
Software stacks:
Implementation Contributors:

11. Graph Model

Workloads type: Graph Analytics
Application domains:
Dataset: Wikipedia English articles. https://dumps.wikimedia.org/
Algorithm: D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. the Journal of machine Learning research, 3:993–1022, 2003.
Involved data motifs:
Software stacks:
Implementation Contributors:

12. Clustering

Workloads type: Big Data
Application domains:
Dataset: Facebook social network. http://snap.stanford.edu/data/egonets-Facebook.html
Algorithm: Krishna, K., Murty, M. N. (1999). Genetic K-means algorithm. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 29(3), 433-439.
Involved data motifs:
Software stacks:
Implementation Contributors:

13. Classification

Workloads type:
Application domains:
Dataset: Amazon movie review. http://snap.stanford.edu/data/web-Movies.html
Algorithm: Rish, I. (2001, August). An empirical study of the naive Bayes classifier. In IJCAI 2001 workshop on empirical methods in artificial intelligence (Vol. 3, No. 22, pp. 41-46). New York: IBM.
Involved data motifs:
Software stacks:
Implementation Contributors:

14. Feature Exaction

Workloads type:
Application domains:
Dataset: ImageNet. http://www.image-net.org
Algorithm: Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60(2), 91-110.
Involved data motifs:
Software stacks:
Implementation Contributors:

15. Search Engine Indexing

Workloads type:
Application domains:
Dataset: Wikipedia English articles. https://dumps.wikimedia.org/
Algorithm: Black, Paul E., inverted index, Dictionary of Algorithms and Data Structures, U.S. National Institute of Standards and Technology Oct 2006. Verified Dec 2006.
Involved data motifs:
Software stacks:
Implementation Contributors:

Others

Dual Learning

GBDT

Learning to Rank

Tranditional Machine Learning

Transformer

Social Network

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

paper view

About

AI Benchmark

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published