Skip to content

Commit

Permalink
Kramers-Kronig relations
Browse files Browse the repository at this point in the history
  • Loading branch information
jhillairet committed Sep 20, 2017
1 parent aa53233 commit 3946702
Show file tree
Hide file tree
Showing 2 changed files with 114 additions and 34 deletions.
132 changes: 106 additions & 26 deletions RF_Fundamentals.tex
Original file line number Diff line number Diff line change
Expand Up @@ -328,7 +328,7 @@ \subsubsection{Finite bandwidth solutions}


% #######################################
\subsection{$k-\omega$ Fields Representation}\label{sec:spectralRepresentation}
\subsubsection{$k-\omega$ Fields Representation}\label{sec:spectralRepresentation}
Let us generalise to the case where the field solution is represented by the summation of many plane (or evanescent) waves characterized by their wavevector $\mathbf{k}=(k_x, k_y, k_z)$. We construct a solution on the form:
\begin{subequations}
\begin{align}
Expand Down Expand Up @@ -429,7 +429,7 @@ \subsection{$k-\omega$ Fields Representation}\label{sec:spectralRepresentation}

% ###########################################################################
% ###########################################################################
\subsection{Constitutive Relations}
\subsection{The Constitutive Relations}
Fluxes densities ($\mathcal{D}$,$\mathcal{B}$) differ from field intensities ($\mathcal{E},\mathcal{H}$) inside the material with regards to relative magnitude and direction. Flux densities can be interpreted as a response of the medium to an applied excitation\footnote{If we recall the Gauss law $ Q = \oint \boldsymbol{\mathcal{D}} \cdot \diff S$, the flux $\boldsymbol{\mathcal{D}}$ depends on the charge inside the closed surface and doesn't depend on the material itself, but the field intensity does. }
. Such, the constitutive relationships can be written generally as:
\begin{subequations}
Expand Down Expand Up @@ -534,7 +534,7 @@ \subsubsection{Nonlocal medium}
\end{subequations}
The restriction of time integration to times $t'<t$ is the expression of the causality, which impose that the quantities at $t$ can only be influenced by the quantities are previous instants.

If invariance with respect to the choice of origin in space (i.e. homogeneous) and time (i.e. stationary) can be asserted, the quantity verify $\mathbf{u}(\r,\r',t,t')=\mathbf{u}(\r-\r', t-t')$. This means that the quantity only depend on the the distance (time elapsed) between the excitation location (time) $(\r', t')$ and the response location (time) $(\r,t)$)\parencite{Dumont2017}. The previous relation can then be expressed in terms of convolutions in the form of\parencite[p.19]{Brambilla1998}:
If invariance with respect to the choice of origin in space (i.e. homogeneous) and time (i.e. stationary) can be asserted, the quantities only depend on the difference of time-space coordinates, that is verify $\mathbf{u}(\r,\r',t,t')=\mathbf{u}(\r-\r', t-t')$. This means that the quantity only depend on the the distance (time elapsed) between the excitation location (time) $(\r', t')$ and the response location (time) $(\r,t)$)\parencite{Dumont2017}. The previous relation can then be expressed in terms of convolutions in the form of\parencite[p.19]{Brambilla1998}:
\begin{subequations}
\begin{align}
\boldsymbol{\mathcal{D}}(\mathbf{r}, t)
Expand All @@ -555,10 +555,9 @@ \subsubsection{Nonlocal medium}
\int \diff \mathbf{r}' \;
\boldsymbol{\sigma}(\mathbf{r}-\mathbf{r}', t-t') \cdot \boldsymbol{\mathcal{E}}(\mathbf{r}', t')
\end{align}
\label{eq:disp_relation_stationnary}
\label{eq:disp_relation_dispersive_homogeneous}
\end{subequations}


If one considers that the fields and current can be represented by a continuous spectrum of time-harmonic plane-waves such as done in section \ref{sec:spectralRepresentation}, which has the appearance of a four-dimensional Fourier transform \parencite{Clemmow1996}, i.e.:
\begin{subequations}
\begin{align}
Expand Down Expand Up @@ -608,8 +607,6 @@ \subsubsection{Nonlocal medium}
\end{subequations}


\subsubsection{Kramers-Kronig}
The convolutional forms of the relationships \ref{eq:disp_relation_nonstationnary}

\subsubsection{Energy density and power flow}
\parencite[p.78]{Felsen1994}
Expand Down Expand Up @@ -660,35 +657,118 @@ \subsubsection{Energy density and power flow}
\del\cdot \Re \left[ \E \times \H^* \right]
&=&
j \omega \left[
\E\cdot(\eps \cdot \E)^* + \E^*\cdot(\eps \cdot \E) +
\H\cdot(\mut \cdot \H)^* + \H^*\cdot(\mut \cdot \H)
-\E\cdot\eps^* \cdot \E^* + \E^*\cdot\eps \cdot \E
-\H\cdot\mut^* \cdot \H^* + \H^*\cdot\mut \cdot \H
\right]
\\
&=& a
&=&
j \omega \left[
\E^*\cdot\left(\eps - \eps^H\right) \cdot \E +
\H^*\cdot\left(\mut - \mut^H\right) \cdot \H
\right]
\end{eqnarray*}
where $\mathbf{M}^H$ is the complex conjugate transpose of $\mathbf{M}$, also known as the \emph{Hermitian} transpose\footnote{This last relationship can be demonstrated from the following:
$$
\E\cdot\eps^*\E^* = \sum_j E_j \sum_{k} \varepsilon^{*}_{jk} E_k^* = \sum_j E_j^* \sum_{k} \varepsilon^{*}_{kj} E_k=\E^*\cdot\eps^H\E
$$ since $\sum_{k} \varepsilon^{*}_{kj} E_k=\eps^H E$ per definition of $\eps^H$.}. From the latter relation, if the permittivity and permeability tensors are Hermitian, that is if they verify $\eps=\eps^H$ and $\mut=\mut^H$, then the instantaneous density of electromagnetic power flow is zero. Thus, if the medium has Hermitian permittivity and permeability, the medium is lossless.

Although the latter property seems anecdotal, the fact that these tensors be Hermitian leads to many interesting consequences of time-invariant lossless media, since the following properties can be demonstrated:
\begin{itemize}
\item The diagonal elements are necessarily real, because they have to be equal to their complex conjugate.
\item Because of conjugation, for complex valued entries the off-diagonal elements cannot be symmetric (or same). \item Moreover, a matrix that has only real entries is Hermitian if and only if it is a symmetric matrix, i.e., if it is symmetric with respect to the main diagonal.
\item Hermitian matrix can be diagonalized by a unitary matrix, and that the resulting diagonal matrix has only real entries. This implies that all eigenvalues of a Hermitian matrix A with dimension n are real, and that A has n linearly independent eigenvectors (ie. orthogonal) and its determinant is real.
\end{itemize}

(\ref{eq:FourierTimeHarmonicDef}) leads to:
$$
\del \cdot \left(\E(\r,\omega) \times \H(\r,\omega) \right)
=
-j\omega \left(\E(\r,\omega)\cdot \D(\r,\omega) + \H(\r,\omega)\cdot\B(\r,\omega) \right)
$$
If moreover the medium is stationary, ie. not time-dispersive and homogeneous, then one can use the dispersion relations (\ref{eq:disp_relation_anisotropic_stationnary_D}) and (\ref{eq:disp_relation_anisotropic_stationnary_B}) to get:
$$
\del \cdot \left(\E(\r,\omega) \times \H(\r,\omega) \right)
=
-j\omega \left(\E(\r,\omega)\cdot \eps (\r,\omega) \cdot \E(\r,\omega) + \H(\r,\omega)\cdot\boldsymbol{\mu}(\r,\omega)\cdot \B(\r,\omega) \right)
$$

\subsubsection{Can a lossless dielectric exist? The Kramers-Kronig relationships}
A dielectric is a material that can be polarized by an applied electric field. This polarization involves the partial separation of electric charges within the material, a process which requires energy. So, polarizing a dielectric means storing energy in it. In a lossy dielectric, this energy is absorbed and for example converted into heat. In a lossless dielectric, one could theoretically get back the energy put into it.

The frequency dependence of dispersive dielectrics comes from the fact that the polarization response of the material to the time-varying electric field cannot be instantaneous. Like in signal processing, such dynamic response can be described by a convolutional relationship such like \ref{eq:disp_relation_dispersive_homogeneous}:
\begin{equation}
\label{eq:convolution_D1}
\calD(\r,t)
= \int_{-\infty}^t \eps(t-t')\E(\r,t') \, \diff t'
= \varepsilon_0 \int_{-\infty}^t \eps_r(t-t')\E(\r,t') \, \diff t'
\end{equation}
Equation (\ref{eq:convolution_D1}) means that the value of $\calD(\r,t)$ at the present time $t$ only depends on the past values of $\E(\r,t')$, with $t'\leq t$. This equation can be equivalently expressed as a standard convolution by extending the integration range to all times if the dielectric response is a causal function, that is if $\eps_r(t)=0$ for $t<0$:
\begin{equation}
\label{eq:convolution_D}
\calD(\r,t)
= \varepsilon_0 \int_{-\infty}^{+\infty} \eps_r(t-t')\E(\r,t') \, \diff t'
\end{equation}
The causality condition can be expressed in terms of the unit step function $u(t)$:
\begin{equation}
\eps_r(t) = \eps_r(t) u(t)
\end{equation}
where $u(t) = 1$ if $t \geq 0$. The Fourier transform of a product of two functions being a convolution of their Fourier transforms, we have:
\begin{equation}
\label{eq:convolution_frequency_epsr}
\eps_r(\omega)
=
\frac{1}{2\pi} \int_{-\infty}^{+\infty}
\eps_r(\omega') U(\omega - \omega') \, \diff \omega'
\end{equation}
where $U(\omega)$ is the Fourier transform of the unit step function $u(t)$:
\begin{equation}
U(\omega) = \lim_{e\to 0^+} \frac{1}{j\omega + e} = \mathcal{P}\frac{1}{j\omega} + \pi \delta(\omega)
\end{equation}
where the symbol $\mathcal{P}$ denotes the Cauchy principal value. Inserting the latter in \ref{eq:convolution_frequency_epsr}:
\begin{eqnarray}
\eps_r(\omega)
&=&
\frac{1}{2\pi} \int_{-\infty}^{+\infty}
\eps_r(\omega')
\left[
\mathcal{P}\frac{1}{j(\omega-\omega')} + \pi \delta(\omega - \omega')
\right]
\, \diff \omega'
\\
&=&
\frac{1}{2\pi j}
\mathcal{P}
\int_{-\infty}^{+\infty}
\frac{\eps_r(\omega')}{\omega-\omega'}
\, \diff \omega'
+ \frac{1}{2} \eps_r(\omega)
\end{eqnarray}
Rearranging the terms leads to:
\begin{eqnarray}
\label{eq:Kramers-Kronig-complex}
\eps_r(\omega)
&=&
\frac{1}{\pi j}
\mathcal{P}
\int_{-\infty}^{+\infty}
\frac{\eps_r(\omega')}{\omega-\omega'}
\, \diff \omega'
\end{eqnarray}
which is the complex-valued formulation of the Kramers-Kronig relation. Setting $\eps_r = \eps_r' + j \eps_r''$ and separating \ref{eq:Kramers-Kronig-complex} into its real and imaginary parts, we obtain the conventional Kramers-Kronig relations:
\begin{eqnarray}
\eps_r'(\omega)
&=&
\frac{1}{\pi}
\mathcal{P}
\int_{-\infty}^{+\infty}
\frac{\eps_r''(\omega')}{\omega-\omega'}
\, \diff \omega'
\\
\eps_r''(\omega)
&=&
-\frac{1}{\pi}
\mathcal{P}
\int_{-\infty}^{+\infty}
\frac{\eps_r'(\omega')}{\omega-\omega'}
\, \diff \omega'
\label{eq:Kramers-Kronig}
\end{eqnarray}

The Kramers-Kronig relations relates the real and the imaginary parts of the relative permittivity. This is a direct consequence in the frequency domain of the causality. An interesting consequence of the Kramers-Kronig relations is that there cannot exist a dispersive medium that is purely lossless, ie $\eps_r''(\omega)=0$ for all $\omega$, since this would also require that $\eps_r'(\omega)=0$. However many cases, the loss can be found small enough in a given bandwidth to be considered as negligible locally.

The electromagnetic energy density for linear, non-dispersive materials, is given by definition by:
$$
\mathcal{W} = \frac{1}{2} \left( \calE\cdot\calD + \calB\cdot\calH \right)
$$
A second consequence is that the causality implies the analyticity condition of $\eps_r$. Indeed, in order to satisfy the Kramers-Kronig relations, $\eps_r$ must be analytic in the closed upper half-plane of $\omega$. This latter result is of interest for complex integration when dealing with lossy plasma\parencite{Brambilla1998}.

TODO: demonstration using signum function? (can be graphical)

TODO: expressing KK relation for positive $\omega$. Usefull?

% ###########################################################################
% ###########################################################################
Expand Down
16 changes: 8 additions & 8 deletions plasmaheatingandcurrentdrivetechnology.kilepr
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ img_extIsRegExp=false
img_extensions=.eps .jpg .jpeg .png .pdf .ps .fig .gif
kileprversion=2
kileversion=2.1.3
lastDocument=Dispersion_Relation.tex
lastDocument=RF_Fundamentals.tex
masterDocument=master.tex
name=Plasma Heating and Current Drive Technology
pkg_extIsRegExp=false
Expand Down Expand Up @@ -73,7 +73,7 @@ archive=true
column=0
encoding=ISO-8859-15
highlight=LaTeX
line=14
line=300
mode=LaTeX
open=true
order=1
Expand All @@ -100,10 +100,10 @@ order=4

[item:RF_Fundamentals.tex]
archive=true
column=126
column=322
encoding=UTF-8
highlight=LaTeX
line=183
line=536
mode=LaTeX
open=true
order=2
Expand Down Expand Up @@ -136,7 +136,7 @@ ViMarks=

[view-settings,view=0,item:Dispersion_Relation.tex]
CursorColumn=0
CursorLine=14
CursorLine=300
JumpList=
ViMarks=.,13,430,[,13,430,],13,430

Expand All @@ -153,10 +153,10 @@ JumpList=
ViMarks=

[view-settings,view=0,item:RF_Fundamentals.tex]
CursorColumn=126
CursorLine=183
CursorColumn=322
CursorLine=536
JumpList=
ViMarks=.,183,125,[,183,118,],183,125
ViMarks=.,536,0,[,536,0,],536,0

[view-settings,view=0,item:master.tex]
CursorColumn=0
Expand Down

0 comments on commit 3946702

Please sign in to comment.