Skip to content

Commit

Permalink
Simplify data_ and data_interface_ in KDTreeFlann. (#6734)
Browse files Browse the repository at this point in the history
KDTreeFlann::SetRawData had some confusion around data, data_, and
data_interface_. As a result, the data from the parameter was copied to
the member std::vector, but the interface (which takes an Eigen::Map)
used the data passed as an argument to the method.
As a result, the searches risked to be run on a dangling pointer,
instead of the intended internal storage.

However, rather than adjusting the pointer for Eigen::Map, I preferred
simplifying the code, and copy the argument to an Eigen::MatrixXd.
  • Loading branch information
PieroV authored Apr 17, 2024
1 parent 5c39bc0 commit 785878f
Show file tree
Hide file tree
Showing 3 changed files with 13 additions and 24 deletions.
2 changes: 2 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
## Main

- Fix TriangleMesh::SamplePointsUniformly not sampling triangle meshes uniformly (PR #6653)
- Fix tensor based TSDF integration example.
- Use GLIBCXX_USE_CXX11_ABI=ON by default
Expand Down Expand Up @@ -33,6 +34,7 @@
- Add Python pathlib support for file IO (PR #6619)
- Fix log error message for `probability` argument validation in `PointCloud::SegmentPlane` (PR #6622)
- Fix macOS arm64 builds, add CI runner for macOS arm64 (PR #6695)
- Fix KDTreeFlann possibly using a dangling pointer instead of internal storage and simplified its members (PR #6734)

## 0.13

Expand Down
21 changes: 6 additions & 15 deletions cpp/open3d/geometry/KDTreeFlann.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -97,8 +97,7 @@ int KDTreeFlann::SearchKNN(const T &query,
// This is optimized code for heavily repeated search.
// Other flann::Index::knnSearch() implementations lose performance due to
// memory allocation/deallocation.
if (data_.empty() || dataset_size_ <= 0 ||
size_t(query.rows()) != dimension_ || knn < 0) {
if (data_.size() == 0 || query.rows() != data_.rows() || knn < 0) {
return -1;
}
indices.resize(knn);
Expand All @@ -121,8 +120,7 @@ int KDTreeFlann::SearchRadius(const T &query,
// Since max_nn is not given, we let flann to do its own memory management.
// Other flann::Index::radiusSearch() implementations lose performance due
// to memory management and CPU caching.
if (data_.empty() || dataset_size_ <= 0 ||
size_t(query.rows()) != dimension_) {
if (data_.size() == 0 || query.rows() != data_.rows()) {
return -1;
}
std::vector<nanoflann::ResultItem<Eigen::Index, double>> indices_dists;
Expand All @@ -148,8 +146,7 @@ int KDTreeFlann::SearchHybrid(const T &query,
// It is also the recommended setting for search.
// Other flann::Index::radiusSearch() implementations lose performance due
// to memory allocation/deallocation.
if (data_.empty() || dataset_size_ <= 0 ||
size_t(query.rows()) != dimension_ || max_nn < 0) {
if (data_.size() == 0 || query.rows() != data_.rows() || max_nn < 0) {
return -1;
}
distance2.resize(max_nn);
Expand All @@ -166,18 +163,12 @@ int KDTreeFlann::SearchHybrid(const T &query,
}

bool KDTreeFlann::SetRawData(const Eigen::Map<const Eigen::MatrixXd> &data) {
dimension_ = data.rows();
dataset_size_ = data.cols();
if (dimension_ == 0 || dataset_size_ == 0) {
if (data.size() == 0) {
utility::LogWarning("[KDTreeFlann::SetRawData] Failed due to no data.");
return false;
}
data_.resize(dataset_size_ * dimension_);
memcpy(data_.data(), data.data(),
dataset_size_ * dimension_ * sizeof(double));
data_interface_.reset(new Eigen::Map<const Eigen::MatrixXd>(data));
nanoflann_index_.reset(
new KDTree_t(dimension_, std::cref(*data_interface_), 15));
data_ = data;
nanoflann_index_ = std::make_unique<KDTree_t>(data_.rows(), data_, 15);
nanoflann_index_->index_->buildIndex();
return true;
}
Expand Down
14 changes: 5 additions & 9 deletions cpp/open3d/geometry/KDTreeFlann.h
Original file line number Diff line number Diff line change
Expand Up @@ -97,17 +97,13 @@ class KDTreeFlann {
bool SetRawData(const Eigen::Map<const Eigen::MatrixXd> &data);

protected:
using KDTree_t = nanoflann::KDTreeEigenMatrixAdaptor<
Eigen::Map<const Eigen::MatrixXd>,
-1,
nanoflann::metric_L2,
false>;
using KDTree_t = nanoflann::KDTreeEigenMatrixAdaptor<const Eigen::MatrixXd,
-1,
nanoflann::metric_L2,
false>;

std::vector<double> data_;
std::unique_ptr<Eigen::Map<const Eigen::MatrixXd>> data_interface_;
Eigen::MatrixXd data_;
std::unique_ptr<KDTree_t> nanoflann_index_;
size_t dimension_ = 0;
size_t dataset_size_ = 0;
};

} // namespace geometry
Expand Down

0 comments on commit 785878f

Please sign in to comment.