-
Notifications
You must be signed in to change notification settings - Fork 15
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add recursive clustering and skeletonization
- Loading branch information
Showing
13 changed files
with
619 additions
and
175 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,277 @@ | ||
__copyright__ = "Copyright (C) 2022 Alexandru Fikl" | ||
|
||
__license__ = """ | ||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
The above copyright notice and this permission notice shall be included in | ||
all copies or substantial portions of the Software. | ||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | ||
THE SOFTWARE. | ||
""" | ||
|
||
from dataclasses import dataclass, replace | ||
from functools import singledispatch | ||
from typing import Optional | ||
|
||
import numpy as np | ||
|
||
from pytools import T, memoize_method | ||
|
||
from arraycontext import PyOpenCLArrayContext | ||
from boxtree.tree import Tree | ||
from pytential import sym, GeometryCollection | ||
from pytential.linalg.utils import IndexList, TargetAndSourceClusterList | ||
|
||
__doc__ = """ | ||
Clustering | ||
~~~~~~~~~~ | ||
.. autoclass:: ClusterTreeLevel | ||
.. autofunction:: cluster | ||
.. autofunction:: partition_by_nodes | ||
""" | ||
|
||
# FIXME: this is just an arbitrary value | ||
_DEFAULT_MAX_PARTICLES_IN_BOX = 32 | ||
|
||
|
||
# {{{ cluster tree | ||
|
||
@dataclass(frozen=True) | ||
class ClusterTreeLevel: | ||
""" | ||
.. attribute:: level | ||
Current level that is represented. | ||
.. attribute:: nlevels | ||
Total number of levels in the tree. | ||
.. attribute:: nclusters | ||
Number of clusters on the current level (same as number of boxes | ||
in :attr:`partition_box_ids`). | ||
.. attribute:: partition_box_ids | ||
Box IDs on the current level. | ||
.. attribute:: partition_parent_ids | ||
Parent box IDs for :attr:`partition_box_ids`. | ||
.. attribute:: partition_parent_map | ||
An object :class:`~numpy.ndarray`, where each entry maps a parent | ||
to its children indices in :attr:`partition_box_ids`. This can be used to | ||
:func:`cluster` all indices in ``partition_parent_map[i]`` into their | ||
parent. | ||
.. automethod:: parent | ||
""" | ||
|
||
# level info | ||
level: int | ||
partition_box_ids: np.ndarray | ||
|
||
# tree info | ||
nlevels: int | ||
box_parent_ids: np.ndarray | ||
|
||
# NOTE: only here to allow easier debugging + testing | ||
_tree: Optional[Tree] | ||
|
||
@property | ||
def nclusters(self): | ||
return self.partition_box_ids.size | ||
|
||
@property | ||
def partition_parent_ids(self): | ||
return self.box_parent_ids[self.partition_box_ids] | ||
|
||
@property | ||
@memoize_method | ||
def partition_parent_map(self): | ||
# NOTE: np.unique returns a sorted array | ||
unique_parent_ids = np.unique(self.partition_parent_ids) | ||
# find the index of each parent id | ||
unique_parent_index = np.searchsorted( | ||
unique_parent_ids, self.partition_parent_ids | ||
) | ||
|
||
unique_parent_map = np.empty(unique_parent_ids.size, dtype=object) | ||
for i in range(unique_parent_ids.size): | ||
unique_parent_map[i], = np.nonzero(unique_parent_index == i) | ||
|
||
return unique_parent_map | ||
|
||
def parent(self) -> "ClusterTreeLevel": | ||
""" | ||
:returns: a new :class:`ClusterTreeLevel` that represents the parent of | ||
the current one, with appropriately updated :attr:`partition_box_ids`, | ||
etc. | ||
""" | ||
|
||
if self.nclusters == 1: | ||
assert self.level == 0 | ||
return self | ||
|
||
return replace(self, | ||
level=self.level - 1, | ||
partition_box_ids=np.unique(self.partition_parent_ids)) | ||
|
||
|
||
@singledispatch | ||
def cluster(obj: T, ctree: ClusterTreeLevel) -> T: | ||
"""Merge together elements of *obj* into their parent object, as described | ||
by *ctree*. | ||
""" | ||
raise NotImplementedError(type(obj).__name__) | ||
|
||
|
||
@cluster.register(IndexList) | ||
def _cluster_index_list(obj: IndexList, ctree: ClusterTreeLevel) -> IndexList: | ||
assert obj.nclusters == ctree.nclusters | ||
|
||
if ctree.nclusters == 1: | ||
return obj | ||
|
||
sizes = [ | ||
sum(obj.cluster_size(j) for j in ppm) | ||
for ppm in ctree.partition_parent_map | ||
] | ||
return replace(obj, starts=np.cumsum([0] + sizes)) | ||
|
||
|
||
@cluster.register(TargetAndSourceClusterList) | ||
def _cluster_target_and_source_cluster_list( | ||
obj: TargetAndSourceClusterList, ctree: ClusterTreeLevel, | ||
) -> TargetAndSourceClusterList: | ||
assert obj.nclusters == ctree.nclusters | ||
|
||
if ctree.nclusters == 1: | ||
return obj | ||
|
||
return replace(obj, | ||
targets=cluster(obj.targets, ctree), | ||
sources=cluster(obj.sources, ctree)) | ||
|
||
# }}} | ||
|
||
|
||
# {{{ cluster generation | ||
|
||
def _build_binary_ish_tree_from_indices(starts: np.ndarray) -> ClusterTreeLevel: | ||
partition_box_ids = np.arange(starts.size - 1) | ||
|
||
box_ids = partition_box_ids | ||
|
||
box_parent_ids = [] | ||
offset = box_ids.size | ||
while box_ids.size > 1: | ||
# NOTE: this is probably not the most efficient way to do it, but this | ||
# code is mostly meant for debugging using a simple tree | ||
clusters = np.array_split(box_ids, box_ids.size // 2) | ||
parent_ids = offset + np.arange(len(clusters)) | ||
box_parent_ids.append(np.repeat(parent_ids, [len(c) for c in clusters])) | ||
|
||
box_ids = parent_ids | ||
offset += box_ids.size | ||
|
||
# NOTE: make the root point to itself | ||
box_parent_ids.append(np.array([offset - 1])) | ||
nlevels = len(box_parent_ids) | ||
|
||
return ClusterTreeLevel( | ||
level=nlevels - 1, | ||
partition_box_ids=partition_box_ids, | ||
nlevels=nlevels, | ||
box_parent_ids=np.concatenate(box_parent_ids), | ||
_tree=None) | ||
|
||
|
||
def partition_by_nodes( | ||
actx: PyOpenCLArrayContext, places: GeometryCollection, *, | ||
dofdesc: Optional[sym.DOFDescriptorLike] = None, | ||
tree_kind: Optional[str] = "adaptive-level-restricted", | ||
max_particles_in_box: Optional[int] = None) -> IndexList: | ||
"""Generate equally sized ranges of nodes. The partition is created at the | ||
lowest level of granularity, i.e. nodes. This results in balanced ranges | ||
of points, but will split elements across different ranges. | ||
:arg dofdesc: a :class:`~pytential.symbolic.dof_desc.DOFDescriptor` for | ||
the geometry in *places* which should be partitioned. | ||
:arg tree_kind: if not *None*, it is passed to :class:`boxtree.TreeBuilder`. | ||
:arg max_particles_in_box: value used to control the number of points | ||
in each partition (and thus the number of partitions). See the documentation | ||
in :class:`boxtree.TreeBuilder`. | ||
""" | ||
if dofdesc is None: | ||
dofdesc = places.auto_source | ||
dofdesc = sym.as_dofdesc(dofdesc) | ||
|
||
if max_particles_in_box is None: | ||
max_particles_in_box = _DEFAULT_MAX_PARTICLES_IN_BOX | ||
|
||
lpot_source = places.get_geometry(dofdesc.geometry) | ||
discr = places.get_discretization(dofdesc.geometry, dofdesc.discr_stage) | ||
|
||
if tree_kind is not None: | ||
from pytential.qbx.utils import tree_code_container | ||
tcc = tree_code_container(lpot_source._setup_actx) | ||
|
||
from arraycontext import flatten | ||
from meshmode.dof_array import DOFArray | ||
tree, _ = tcc.build_tree()(actx.queue, | ||
particles=flatten( | ||
actx.thaw(discr.nodes()), actx, leaf_class=DOFArray | ||
), | ||
max_particles_in_box=max_particles_in_box, | ||
kind=tree_kind) | ||
|
||
from boxtree import box_flags_enum | ||
tree = tree.get(actx.queue) | ||
leaf_boxes, = (tree.box_flags & box_flags_enum.HAS_CHILDREN == 0).nonzero() | ||
|
||
indices = np.empty(len(leaf_boxes), dtype=object) | ||
starts = None | ||
|
||
for i, ibox in enumerate(leaf_boxes): | ||
box_start = tree.box_source_starts[ibox] | ||
box_end = box_start + tree.box_source_counts_cumul[ibox] | ||
indices[i] = tree.user_source_ids[box_start:box_end] | ||
|
||
ctree = ClusterTreeLevel( | ||
level=tree.nlevels - 1, | ||
nlevels=tree.nlevels, | ||
box_parent_ids=tree.box_parent_ids, | ||
partition_box_ids=leaf_boxes, | ||
_tree=tree) | ||
else: | ||
if discr.ambient_dim != 2 and discr.dim == 1: | ||
raise ValueError("only curves are supported for 'tree_kind=None'") | ||
|
||
nclusters = max(discr.ndofs // max_particles_in_box, 2) | ||
indices = np.arange(0, discr.ndofs, dtype=np.int64) | ||
starts = np.linspace(0, discr.ndofs, nclusters + 1, dtype=np.int64) | ||
assert starts[-1] == discr.ndofs | ||
|
||
ctree = _build_binary_ish_tree_from_indices(starts) | ||
|
||
from pytential.linalg import make_index_list | ||
return make_index_list(indices, starts=starts), ctree | ||
|
||
# }}} |
Oops, something went wrong.