Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Example] Add ALS application #268

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 18 additions & 0 deletions examples/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -126,3 +126,21 @@ add_executable(TriangleCounting triangle_counting.cpp)
target_link_libraries(TriangleCounting ${husky})
target_link_libraries(TriangleCounting ${HUSKY_EXTERNAL_LIB})
husky_default_properties(TriangleCounting)

# Alternating Least Squares
add_executable(ALS als.cpp)
target_link_libraries(ALS ${husky})
target_link_libraries(ALS ${HUSKY_EXTERNAL_LIB})
husky_default_properties(ALS)

# Triangle counting
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Redundant targets.

add_executable(TriangleCounting triangle_counting.cpp)
target_link_libraries(TriangleCounting ${husky})
target_link_libraries(TriangleCounting ${HUSKY_EXTERNAL_LIB})
husky_default_properties(TriangleCounting)

# Alternating Least Squares
add_executable(ALS als.cpp)
target_link_libraries(ALS ${husky})
target_link_libraries(ALS ${HUSKY_EXTERNAL_LIB})
husky_default_properties(ALS)
311 changes: 311 additions & 0 deletions examples/als.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,311 @@
// Copyright 2015 Husky Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Example of configuration
//
// master_host=master
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

No need to put all information of configuration here. Be selective.

// master_port=15444
// comm_port=19832
// hdfs_namenode=master
// hdfs_namenode_port=9000
// input=hdfs:///datasets/ml/netflix
//
// # For Master
// serve=1
//
// # Session for worker information
// [worker]
// # info=master:1
// info=w1:20
// info=w2:20

#include <algorithm>
#include <random>
#include <string>
#include <vector>

#include "boost/tokenizer.hpp"
#include <Eigen/Dense>

#include "core/executor.hpp"
#include "core/objlist.hpp"
#include "core/utils.hpp"
#include "io/input/inputformat_store.hpp"
#include "io/input/line_inputformat.hpp"
#include "io/hdfs_manager.hpp"
#include "lib/aggregator_factory.hpp"

#include "lib/vector.hpp"

typedef Eigen::VectorXd VectorT;
typedef Eigen::MatrixXd MatrixT;

const int MAGIC = 50000000;
typedef Eigen::VectorXd VectorT;
typedef Eigen::MatrixXd MatrixT;
typedef std::pair<double, VectorT> FactorMsgT;

/// Any class that subclasses it can be able to do ALS
/// TODO need some machanism to "remember" the deduplicated requests
class ALSNode{
public:
ALSNode() {}
ALSNode(int id) : key(id) {
ever_active = false;
}

static void set_rank(int _rank) {
rank = _rank;
}
static void set_lambda(double _lambda) {
lambda = _lambda;
}
static void set_iter(int _iter) {
iter = _iter;
}

typedef int KeyT;
KeyT key;
bool active;
bool ever_active;
std::vector<int> nbs;
std::vector<double> obs;
VectorT factors;

static int rank; // Default is 20
static double lambda; // Default is 0.01
static int iter; // Default is 10

virtual KeyT const & id() const {
return key;
}

void broadcast(husky::PushChannel<FactorMsgT, ALSNode>& ch) {
ever_active = true;
for(int i = 0; i < nbs.size(); i++) {
ch.push(FactorMsgT(obs[i], factors), nbs[i]);
}
}

friend husky::BinStream& operator<<(husky::BinStream& stream, const ALSNode& node) {
stream << node.key << node.active << node.ever_active << node.nbs << node.obs << node.factors;
return stream;
}

friend husky::BinStream& operator>>(husky::BinStream& stream, ALSNode& node) {
stream >> node.key >> node.active >> node.ever_active >> node.nbs >> node.obs >> node.factors;
return stream;
}
};

int ALSNode::rank = 20;
double ALSNode::lambda = 0.01;
int ALSNode::iter = 10;

class UserItemRatingObject {
public:
using KeyT = int;
explicit UserItemRatingObject(int _user, int _item, double _rating) : user(_user), item(_item), rating(_rating) {
std::mt19937 rng;
rng.seed(std::random_device()());
std::uniform_int_distribution<std::mt19937::result_type> dist(1, 1 << 31);
objid = dist(rng);
}
KeyT objid;
int user;
int item;
double rating;
const KeyT& id() const { return objid; }
};


// TODO: Serialization for VectorT (Eigen)
void als() {
// Prepare ObjList for later ALS
int num_worker = husky::Context::get_num_workers();
int worker_id = husky::Context::get_global_tid();
auto& als_list = husky::ObjListStore::create_objlist<ALSNode>("als-node");
auto& ac = husky::lib::AggregatorFactory::get_channel();
// Parse Data
auto& tmp_store = husky::ObjListStore::create_objlist<UserItemRatingObject>("tmp"); // Intented to be stayed at local
husky::lib::Aggregator<int> max_user_index_agg(0, [](int&a, const int& b) {a = std::max(a, b);});
husky::lib::Aggregator<int> max_item_index_agg(0, [](int&a, const int& b) {a = std::max(a, b);});
husky::lib::Aggregator<int> num_rating_agg(0, [](int&a, const int& b) {a += b;});
auto& infmt = husky::io::InputFormatStore::create_line_inputformat();
std::string url = husky::Context::get_param("input");
husky::LOG_I << url;
infmt.set_input(url);
std::function<void(boost::string_ref)> parser = [&](boost::string_ref chunk) {
if (chunk.empty())
return;
boost::char_separator<char> sep(" \t");
boost::tokenizer<boost::char_separator<char>> tok(chunk, sep);

auto it = tok.begin();
int user = std::stoi(*it);
it++;
int item = std::stoi(*it)+MAGIC;
it++;
double rating = std::stof(*it);

max_user_index_agg.update(user);
max_item_index_agg.update(item);
tmp_store.add_object(UserItemRatingObject(user, item, rating));
};
husky::load(infmt, {&ac}, parser);
husky::LOG_I << "Finished Loading From HDFS";
// loadData into ALS Obj
int num_node = std::max(max_item_index_agg.get_value(), max_user_index_agg.get_value());
husky::LOG_I << "num_node: " << std::to_string(num_node);
for (int i = worker_id; i <= num_node; i += num_worker) {
als_list.add_object(ALSNode(i));
}
husky::LOG_I << "Created als_list";
husky::globalize(als_list);
husky::LOG_I << "Balanced als_list";
husky::PushChannel<std::pair<int, double>, ALSNode>& data_push_channel =
husky::ChannelStore::create_push_channel<std::pair<int, double>>(tmp_store, als_list);
husky::list_execute(tmp_store, {}, {&data_push_channel}, [&](UserItemRatingObject& obj) {
data_push_channel.push(std::pair<int, double>(obj.item, obj.rating), obj.user);
data_push_channel.push(std::pair<int, double>(obj.user, obj.rating), obj.item);
});
husky::LOG_I << "Pushed Data from tmp_store to als_list";
husky::list_execute(als_list, {&data_push_channel}, {}, [&](ALSNode& node){
auto& vec_msg = data_push_channel.get(node);
for (auto& msg : vec_msg) {
node.nbs.push_back(msg.first);
node.obs.push_back(msg.second);
}
});
husky::LOG_I << "als_list received data";
husky::list_execute(als_list, {}, {}, [&](ALSNode& node){
if (node.nbs.size() == 0) als_list.delete_object(&node);
});
husky::LOG_I << "deleted useless obj in als_list";
husky::balance(als_list);
husky::LOG_I << "blanced after deletion in als_list";
// Set the parameter for training
int num_iter = 10;
// Initiate ALS list
auto& factors_push_channel = husky::ChannelStore::create_push_channel<FactorMsgT>(als_list, als_list);
husky::list_execute(als_list, {}, {&factors_push_channel}, [&](ALSNode& node) {
node.factors.resize(node.rank);
node.factors.setRandom();
if(node.key < MAGIC) {
node.broadcast(factors_push_channel);
node.active = false;
} else {
node.active = true;
}
return;
});
husky::LOG_I << "Initilizated als_list";
// Train ALS
for (int iter_train = 0; iter_train < num_iter; iter_train++) {
husky::list_execute(als_list, {&factors_push_channel}, {&factors_push_channel}, [&] (ALSNode & node) {
// If I'm type 0 and I'm initing, send msg
if(node.active == false) {
// if (node.ever_active == false) node.broadcast(factors_push_channel);
node.active = true;
return;
} else {
MatrixT sum_mat;
VectorT sum_vec = VectorT::Zero(node.rank);
auto & recv_data = factors_push_channel.get(node);
if (recv_data.size() == 0) return;
for(int i = 0; i < recv_data.size(); i++) {
double rating = recv_data[i].first;
auto & other_factors = recv_data[i].second;
assert(other_factors.size() == node.rank);
if(sum_mat.size() == 0) {
sum_mat.resize(node.rank, node.rank);
sum_mat.triangularView<Eigen::Upper>() = other_factors * other_factors.transpose();
} else {
sum_mat.triangularView<Eigen::Upper>() += other_factors * other_factors.transpose();
}
sum_vec += other_factors * rating;
}
// husky::LOG_I << "regularization";
double regularization = node.lambda*node.nbs.size()*(node.key < MAGIC);
for(int i = 0; i < sum_mat.rows(); ++i)
sum_mat(i,i) += regularization;
// TODO
// husky::LOG_I << "added regularization";
node.factors = sum_mat.selfadjointView<Eigen::Upper>().ldlt().solve(sum_vec);
// husky::LOG_I << "solved factors";
// if (node.get_iter() != ALSNode::iter-1)
node.broadcast(factors_push_channel);
// husky::LOG_I << "broadcasted";
node.active = false;
}
});
}
husky::LOG_I << "Trained als_list";
// Show The result, get the rmse
auto rmse_agg = husky::lib::Aggregator<double>(0.0, [](double& a, const double& b){ a += b; });
husky::list_execute(als_list, {&factors_push_channel}, {&ac}, [&](ALSNode& node){
if(not node.active) return;
MatrixT sum_mat;
VectorT sum_vec = VectorT::Zero(node.rank);
auto & recv_data = factors_push_channel.get(node);
if (recv_data.size() == 0) return;
for(int i=0; i<recv_data.size(); i++) {
double rating = recv_data[i].first;
auto & X = recv_data[i].second;
assert(X.size() == node.rank);
MatrixT XtX(node.rank, node.rank);
if(sum_mat.size() == 0) {
sum_mat.resize(node.rank, node.rank);
sum_mat.triangularView<Eigen::Upper>() = X * X.transpose();
} else {
sum_mat.triangularView<Eigen::Upper>() += X * X.transpose();
}
sum_vec += X * rating;
}
node.factors = sum_mat.selfadjointView<Eigen::Upper>().ldlt().solve(sum_vec);

for(int i = 0; i < recv_data.size(); i++) {
double rating = recv_data[i].first;
auto & X = recv_data[i].second;
double pred = X.dot(node.factors);
pred = std::max(1., pred);
pred = std::min(5., pred);
double loss = pred - rating;
// husky::LOG_I << "pred: " << pred;
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Remove all unused comments like this.

// husky::LOG_I << "rating: " << rating;
loss *= loss;
rmse_agg.update(loss);
num_rating_agg.update(1);
}
});
int num_rating = num_rating_agg.get_value();
if (worker_id == 0) {
double rmse = rmse_agg.get_value();
rmse = sqrt(rmse/num_rating);
husky::LOG_I << "num_rating: " << std::to_string(num_rating);
husky::LOG_I << std::to_string(rmse);
}
}

int main(int argc, char** argv) {
std::vector<std::string> args;
args.push_back("hdfs_namenode");
args.push_back("hdfs_namenode_port");
args.push_back("input");
if (husky::init_with_args(argc, argv, args)) {
husky::run_job(als);
return 0;
}
return 1;
}