Skip to content

gujralsanyam22/HOUSE-PRICE-PREDICTION

Repository files navigation

HOUSE-PRICE-PREDICTION Open in Streamlit

Table of Content

Demo

Link: https://https://house-price-prediction1-api.herokuapp.com/

Overview

This is a Kaggle House Price Prediction Competition - House Prices: Advanced Regression Techniques. The objective of the project is to perform data visulalization techniques to understand the insight of the data. Machine learning often required to getting the understanding of the data and its insights. This project aims apply various Python tools to get a visual understanding of the data and clean it to make it ready to apply machine learning opertation on it.

Motivation

What could be a perfect way to utilize unfortunate lockdown period? Like most of you, I spend my time in cooking, Netflix, coding and reading some latest research papers on weekends. The idea of classifying indian currency struck to me when I was browsing through some research papers. I couldn't find any relevant research paper (and of course dataset!) associated with it. And that led me to collect the images of Indian currency to train a deep learning model using this amazing tool.

Technical Aspect

This project is divided into two part:

  1. Training a deep learning model using Keras. (Not covered in this repo. I'll update the link here once I make it public.)

  2. Building and hosting a Flask web app on Heroku.

    • A user can choose image from a device or capture it using a pre-built camera.
    • Used Amazon S3 Bucket to store the uploaded image and predictions.
    • Used CSRF Token to protect against CSRF attacks.
    • Used Sentry to catch the exception on the back-end.
    • After uploading the image, the predictions are displayed on a Bar Chart.

    Installation

The Code is written in Python 3.7. If you don't have Python installed you can find it here. If you are using a lower version of Python you can upgrade using the pip package, ensuring you have the latest version of pip. To install the required packages and libraries, run this command in the project directory after cloning the repository:

pip install -r requirements.txt

Run

STEP 1

Linux and macOS User

Open .bashrc or .zshrc file and add the following credentials:

export AWS_ACCESS_KEY="your_aws_access_key"
export AWS_SECRET_KEY="your_aws_secret_key"
export ICP_BUCKET='your_aws_bucket_name'
export ICP_BUCKET_REGION='bucket_region'
export ICP_UPLOAD_DIR='bucket_path_to_save_images'
export ICP_PRED_DIR='bucket_path_to_save_predictions'
export ICP_FLASK_SECRET_KEY='anything_random_but_unique'
export SENTRY_INIT='URL_given_by_sentry'

Note: SENTRY_INIT is optional, only if you want to catch exceptions in the app, else comment/remove the dependencies and code associated with sentry in app/main.py

Windows User

Since, I don't have a system with Windows OS, here I collected some helpful resource on adding User Environment Variables in Windows.

Attention: Please perform the steps given in these tutorials at your own risk. Please don't mess up with the System Variables. It can potentially damage your PC. You should know what you're doing.

STEP 2

To run the app in a local machine, shoot this command in the project directory:

gunicorn wsgi:app

Deployement on Heroku

Set the environment variable on Heroku as mentioned in STEP 1 in the Run section. [Reference]

Our next step would be to follow the instruction given on Heroku Documentation to deploy a web app.

Directory Tree

├── app 
│   ├── __init__.py
│   ├── main.py
│   ├── model
│   ├── static
│   └── templates
├── config
│   ├── __init__.py
├── processing
│   ├── __init__.py
├── requirements.txt
├── runtime.txt
├── LICENSE
├── Procfile
├── README.md
└── wsgi.py

To Do

  1. Convert the app to run without any internet connection, i.e. PWA.
  2. Add a better vizualization chart to display the predictions.

Bug / Feature Request

If you find a bug (the website couldn't handle the query and / or gave undesired results), kindly open an issue here by including your search query and the expected result.

If you'd like to request a new function, feel free to do so by opening an issue here. Please include sample queries and their corresponding results.

Technologies Used

Team

[SANYAM-GUJRAL]

License

Apache license

Copyright 2020 SANYAM-GUJRAL

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Credits

  • [Google Images Download]:- This project wouldn't have been possible without this tool. It saved my enormous amount of time while collecting the data. A huge shout-out to its creator.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages