Skip to content

Commit

Permalink
TessellateIPU IO tiles basic demo. (#20)
Browse files Browse the repository at this point in the history
Demo coming from this question: can we implement the concept of IO tiles
on the IPU programmatically (instead of being a black box option).

Answer is yes! (while all caveats: this is a demo!) Using
`donate_argnums` concept + proper tile mapping information using
TessellateIPU.
  • Loading branch information
balancap authored Aug 25, 2023
1 parent 7e0047b commit e254e59
Showing 1 changed file with 59 additions and 0 deletions.
59 changes: 59 additions & 0 deletions examples/demo/demo_io_tiles.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
# Copyright (c) 2023 Graphcore Ltd. All rights reserved.
from functools import partial

import jax
import numpy as np

from tessellate_ipu import tile_data_barrier, tile_map, tile_put_sharded

# Number of tiles per "group"
Ntiles = 32
# Size of the array, per tile.
N = 512

# Splitting between IO tiles and compute tiles.
io_tiles = tuple(range(0, Ntiles))
compute_tiles = tuple(range(Ntiles, 2 * Ntiles))


@partial(jax.jit, backend="ipu", donate_argnums=(1,))
def compute_fn(input, iobuffer):
"""`compute_fn` acts as one stage pipeline:
- `input` gets transfered to IO tiles, and then copied into `iobuffer` at the end of the program;
- `iobuffer`, with previous call data, is already available on compute tiles for crunching numbers!
"""

# IO tiles => transfer from host (not blocking IO tiles.)
input = tile_put_sharded(input, io_tiles)

# Compute tiles => use iobuffer already available..
iobuffer = tile_put_sharded(iobuffer, compute_tiles)
# Some arbitrary computation...
output = iobuffer[:, :64]
output = tile_map(jax.lax.sin_p, output)
output = tile_map(jax.lax.reduce_sum_p, output, axes=(0,))

# Transfer to input compute tiles, to be copied in `iobuffer`.
input = tile_put_sharded(input.array, compute_tiles)
# Blocking to make sure compute is finished.
input, output = tile_data_barrier(input, output)
return output, input.array


# Initialize IO buffer with zeros => first call output == 0
iobuffer_init = np.zeros((Ntiles, N), dtype=np.float32)
iobuffer_init = jax.device_put(iobuffer_init, jax.devices("ipu")[0])

data0 = np.random.rand(Ntiles, N).astype(np.float32)
data1 = np.random.rand(Ntiles, N).astype(np.float32)

# First run, using "zeros"
output0, iobuffer0 = compute_fn(data0, iobuffer_init)
# Second run, using `data0` previously transfered.
output1, iobuffer1 = compute_fn(data1, iobuffer0)

print("Output 0:", np.asarray(output0))
print("Output 1:", np.asarray(output1))
print("Expected output 1:", np.sum(np.sin(data0[:, :64]), axis=-1))

print("NOTE: is iobuffer0 deleted (i.e. overwritten)?", iobuffer0.is_deleted())

0 comments on commit e254e59

Please sign in to comment.