Skip to content
/ LTGC Public
forked from dialogueeeeee/LTGC

πŸ”₯[CVPR 2024 Oral] Official code for LTGC: Long-Tail Recognition via Leveraging LLMs-driven Generated Content

Notifications You must be signed in to change notification settings

fistyee/LTGC

Β 
Β 

Repository files navigation

LTGC: Long-Tail Recognition via Leveraging Generated Content [Official, CVPR 2024, Oral]

[Project] [Paper]

Overview

Qihao Zhao*,Β  Yalun Dai*,Β  Hao Li,Β  Wei Hu,Β  Fan Zhang,Β  Jun Liu,Β 

(BUCT & NTU & SUTD & NWPU, * Equal contribution)

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2024, Oral Presentation

Further information please contact Qihao Zhao and Yalun Dai.

Dataset Preparation

(1) Three bechmark datasets

  • Please download these datasets and put them to the /data file.
  • ImageNet-LT and Places-LT can be found at here.
  • iNaturalist data should be the 2018 version from here.
data
β”œβ”€β”€ ImageNet_LT
β”‚Β Β  β”œβ”€β”€ test
β”‚Β Β  β”œβ”€β”€ train
β”‚Β Β  └── val
β”œβ”€β”€ Place365
β”‚Β Β  β”œβ”€β”€ data_256
β”‚Β Β  β”œβ”€β”€ test_256
β”‚Β Β  └── val_256
└── iNaturalist 
 Β Β  β”œβ”€β”€ test2018
    └── train_val2018

(2) Txt files

data_txt
β”œβ”€β”€ ImageNet_LT
β”‚Β Β  β”œβ”€β”€ ImageNet_LT_test.txt
β”‚Β Β  β”œβ”€β”€ ImageNet_LT_train.txt
β”‚Β Β  └── ImageNet_LT_val.txt
β”œβ”€β”€ Places_LT_v2
β”‚Β Β  β”œβ”€β”€ Places_LT_test.txt
β”‚Β Β  β”œβ”€β”€ Places_LT_train.txt
β”‚Β Β  └── Places_LT_val.txt
└── iNaturalist18
    β”œβ”€β”€ iNaturalist18_train.txt
    β”œβ”€β”€ iNaturalist18_uniform.txt
    └── iNaturalist18_val.txt 

Running Scripts

Before running, please replace your own OPENAI key.

Generated Existing Tail-class Descriptions

python lmm_i2t.py -d $DATASET_PATH -m $MAX_NUMBER -f $CLASS_NUMBER_FILE -exi $EXIST_DESCRIPTION_FILE

Generated Extended Tail-class Descriptions

python lmm_extension.py -exi $EXIST_DESCRIPTION_FILE -m $MAX_GENERATED_IMAGES -ext $EXTEND_DESCRIPTION_FILE

Generated Extended Data using Iterative Evaluation

python draw_i2t.py -ext $EXTEND_DESCRIPTION_FILE -d $DATASET_PATH -t $THRESH -r $MAX_ROUNDS

Citation

@inproceedings{zhao2024ltgc,
  title={LTGC: Long-tail Recognition via Leveraging LLMs-driven Generated Content},
  author={Zhao, Qihao and Dai, Yalun and Li, Hao and Hu, Wei and Zhang, Fan and Liu, Jun},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={19510--19520},
  year={2024}
}

About

πŸ”₯[CVPR 2024 Oral] Official code for LTGC: Long-Tail Recognition via Leveraging LLMs-driven Generated Content

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%