./run_cori.sh --num_tr N
./run_cori.sh
./run_cori.sh --num_tr -1
./run_cori.sh --test --load_path ./results/run111/models/net_best_val_loss.pkl
./run_cori.sh --tr_file path/to/your/tr_file --val_file path/to/your/val_file
./run_cori.sh --test --test_file path/to/your/test_file --load_path path/to/your/weights
- same commands as above but replace "./run_cori.sh" with "sbatch cori_batch.sl"
./run_cori.sh --help
module load deeplearning
- go to jupyter.nersc.gov
- open atlas_main.ipynb
- run the cells
./preproc_files.sh --source_path path/where/initial/input/files/are --dest_path path/where/you/want/to/put/trvaltest/files --suffix "string_to_append_to_files_for_your_own_benefit"
-
if you pick suffix to be "_run5", then in your dest_path will be four files:
- all_data_merged_run5.h5
- train_run5.h5
- test_run5.h5
- val_run5.h5
-
you can delete all_data_merged_run5.h5, which is all your data in one file, to save space or you can keep it for maybe a new tr,val,test split later
./run_maeve.sh K --num_tr N