-
Notifications
You must be signed in to change notification settings - Fork 290
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* init jasper * init jasper * add to overview * add to overview * remove some params * fix max length * return sdpa * add dtype * add dtype * fix convert_to_tensor * change to encode * return whitespace processing * explicitly add instructions * move seq length * try float * fix max_seq_length * add prompt validation to format instruction * don't use instructions only to s2p
- Loading branch information
Showing
4 changed files
with
124 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
from __future__ import annotations | ||
|
||
import logging | ||
from collections.abc import Sequence | ||
from functools import partial | ||
from typing import Any, Callable | ||
|
||
import numpy as np | ||
import torch | ||
from sentence_transformers import SentenceTransformer | ||
|
||
import mteb | ||
from mteb.encoder_interface import PromptType | ||
from mteb.model_meta import ModelMeta | ||
|
||
from .wrapper import Wrapper | ||
|
||
logger = logging.getLogger(__name__) | ||
|
||
|
||
class JasperWrapper(Wrapper): | ||
def __init__( | ||
self, | ||
model_name: str, | ||
revision: str, | ||
instruction_template: str | Callable[[str], str] | None = None, | ||
max_seq_length: int = 2048, | ||
**kwargs: Any, | ||
): | ||
self.model_name = model_name | ||
self.model = SentenceTransformer(model_name, revision=revision, **kwargs) | ||
self.instruction_template = instruction_template | ||
self.model.max_seq_length = max_seq_length | ||
|
||
def encode( | ||
self, | ||
sentences: Sequence[str], | ||
*, | ||
task_name: str, | ||
prompt_type: PromptType | None = None, | ||
**kwargs: Any, | ||
) -> np.ndarray: | ||
task = mteb.get_task(task_name=task_name) | ||
instruction = self.get_task_instruction(task_name, prompt_type) | ||
|
||
# to passage prompts won't be applied to passages | ||
if prompt_type == PromptType.passage and task.metadata.type == "s2p": | ||
instruction = None | ||
|
||
embeddings = self.model.encode( | ||
sentences, | ||
normalize_embeddings=True, | ||
prompt=instruction, | ||
**kwargs, | ||
) | ||
|
||
if isinstance(embeddings, torch.Tensor): | ||
# sometimes in kwargs can be return_tensors=True | ||
embeddings = embeddings.cpu().detach().float().numpy() | ||
return embeddings | ||
|
||
|
||
jasper_en_v1 = ModelMeta( | ||
loader=partial( # type: ignore | ||
JasperWrapper, | ||
model_name="infgrad/jasper_en_vision_language_v1", | ||
revision="d6330ce98f8a0d741e781df845904c9484f00efa", | ||
config_kwargs={"is_text_encoder": True, "vector_dim": 12288}, | ||
model_kwargs={ | ||
"attn_implementation": "sdpa", | ||
"torch_dtype": torch.float16, | ||
}, | ||
trust_remote_code=True, | ||
max_seq_length=2048, | ||
instruction_template="Instruct: {instruction}\nQuery: ", | ||
), | ||
name="infgrad/jasper_en_vision_language_v1", | ||
languages=["eng-Latn"], | ||
open_weights=True, | ||
revision="d6330ce98f8a0d741e781df845904c9484f00efa", | ||
release_date="2024-12-11", # first commit | ||
n_parameters=1_999_000_000, | ||
memory_usage=None, | ||
max_tokens=131072, | ||
embed_dim=8960, | ||
license="apache-2.0", | ||
reference="https://huggingface.co/infgrad/jasper_en_vision_language_v1/tree/main", | ||
similarity_fn_name="cosine", | ||
framework=["Sentence Transformers", "PyTorch"], | ||
use_instructions=True, | ||
adapted_from=None, | ||
superseded_by=None, | ||
training_datasets={ | ||
"non_mteb": ["BAAI/Infinity-MM", "HuggingFaceFW/fineweb-edu"], | ||
}, | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters