Skip to content

doubleailes/girolle

Repository files navigation

girolle

Description

A nameko-rpc like lib in rust. Check the To-Do section to see limitation.

Do not use in production!

Girolle use Nameko architecture to send request and get response.

Documentation

User documentation and Rust documentation

Installation

cargo add girolle

Configuration

There is two way to create a configuration. The first one is to use the Config::with_yaml_defaults function that will read a configuration from a YAML file, see example. The second one is to create a configuration by hand.

Create a configuration from a yaml file

The configuration is done by a yaml file. It should be compliant with a Nameko one. The file should look like this:

AMQP_URI: 'amqp://toto:super@$172.16.1.1:5672//'
rpc_exchange: 'nameko-rpc'
max_workers: 10
parent_calls_tracked: 10

In this example:

  • The AMQP_URI is the connection string to the RabbitMQ server.
  • The rpc_exchange is the exchange name for the rpc calls.
  • The max_workers is the max number of workers that will be created to handle the rpc calls.
  • The parent_calls_tracked is the number of parent calls that will be tracked by the service.

Create a configuration by hand

let conf = Config::default_config();
conf.with_amqp_uri("amqp://toto:super@localhost:5672/")
    .with_rpc_exchange("nameko-rpc")
    .with_max_workers(10)
    .with_parent_calls_tracked(10);

Environment variables

The configuration supports the expansion of the environment variables with the following syntax ${VAR_NAME}. Like in this example:

AMQP_URI: 'amqp://${RABBITMQ_USER}:${RABBITMQ_PASSWORD}@${RABBITMQ_HOST}:${RABBITMQ_PORT}/%2f'
rpc_exchange: 'nameko-rpc'
max_workers: 10
parent_calls_tracked: 10

How to use it

The core concept is to remove the pain of the queue creation and reply by mokcing the Nameko architecture with a RpcService or RpcClient, and to use an abstract type serde_json::Value to manipulate a serializable data.

if you do not use the macro #[girolle] you need to create a function that extract the data from the a &[Value] like this:

fn fibonacci_reccursive(s: &[Value]) -> Result<Value> {
    let n: u64 = serde_json::from_value(s[0].clone())?;
    let result: Value = serde_json::to_value(fibonacci(n))?;
    Ok(result)
}

Exemple

Create a simple service

use girolle::prelude::*;
use std::{thread, time};

#[girolle]
fn hello(s: String) -> String {
    format!("Hello, {}!", s)
}

#[girolle]
fn sub(a: i64, b: i64) -> i64 {
    a - b
}

#[girolle]
fn slip(n: u64) -> String {
    thread::sleep(time::Duration::from_secs(n));
    format!("Slept for {} seconds", n)
}

#[girolle]
fn fibonacci(n: u64) -> u64 {
    if n <= 1 {
        return n;
    }
    return fibonacci(n - 1) + fibonacci(n - 2);
}

fn main() {
    let conf: Config = Config::with_yaml_defaults("staging/config.yml".to_string()).unwrap();
    let _ = RpcService::new(conf, "video")
        .register(hello)
        .register(sub)
        .register(slip)
        .register(fibonacci)
        .start();
}

Create multiple calls to service of methods, sync and async

use girolle::prelude::Payload;
use girolle::{serde_json, Config, RpcClient, Value};
use std::time::Instant;
use std::{thread, time};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Load the configuration
    let conf: Config = Config::with_yaml_defaults("staging/config.yml".to_string())?;
    let service_name = "video";
    // Create the client from the configuration
    let mut rpc_client = RpcClient::new(conf);
    // Register the service
    rpc_client.register_service(service_name).await?;
    // Start the client and the consumers
    rpc_client.start().await?;
    // Build the payload
    let p = Payload::new().arg(30);
    // Send the request sync
    let new_result = rpc_client.send(service_name, "fibonacci", p)?;
    // Deserialize the result
    let fib_result: u64 = serde_json::from_value(new_result.get_value())?;
    // Print the result
    println!("fibonacci :{:?}", fib_result);
    assert_eq!(fib_result, 832040);
    // Close the client
    rpc_client.unregister_service(service_name)?;
    rpc_client.close().await?;
    Ok(())
}

Stack

Girolle use lapin as an AMQP client/server library.

Supported features

  • create a client
    • create a proxy service in rust to interact with an other service
  • Create a simple service
    • Handle the error
    • write test
  • Add macro to simplify the creation of a service
    • Add basic macro
    • fix macro to handle return
    • fix macro to handle recursive function
  • listen to a pub/sub queue

nameko-client

The Girolle client got the basic features to send sync request and async resquest. I'm not really happy about the way it need to interact with. I would like to find a more elegant way like in the nameko. But it works, and it is not really painfull to use.

nameko-rpc

The RpcService and the macro procedural are the core of the lib. It does not suppport proxy, i know that's one of the most important feature of the Nameko lib. I will try to implement it in the future. But i think i need a bit refactor the non-oriented object aspect of Rust make it harder.

nameko-pubsub

The PubSub service is not at all implemented. I dunno if that's something i'm interested in.

nameko-web

The web service is not implemented. I'm not sure if i will implement it. I need to rework the client to be make it 100% thread safe. It should be a commun subject with the proxy.

Limitation

The current code as been tested with the nameko and girolle examples in this repository.

nameko_test.py simple_sender.rs
nameko_service.py x x
simple_macro x x

Benchmark

Simple message benchmark

nameko_test.py simple_sender.rs
nameko_service.py 15.587 s 11.532 s
simple_macro.rs 15.654 s 8.078 s

Client benchmark

Using hyperfine to test the client benchmark.

Girolle client ( with Girolle service )

hyperfine -N './target/release/examples/simple_sender'
Benchmark 1: ./target/release/examples/simple_sender
  Time (mean ± σ):      9.995 s ±  0.116 s    [User: 0.163 s, System: 0.197 s]
  Range (min … max):    9.778 s … 10.176 s    10 runs

Nameko client ( with Girolle service )

hyperfine -N --warmup 3 'python nameko_test.py'
Benchmark 1: python nameko_test.py
  Time (mean ± σ):     15.654 s ±  0.257 s    [User: 1.455 s, System: 0.407 s]
  Range (min … max):   15.202 s … 15.939 s    10 runs

Service benchmark

Girolle service ( with Girolle client )

hyperfine -N './target/release/examples/simple_sender'
Benchmark 1: ./target/release/examples/simple_sender
  Time (mean ± σ):      9.995 s ±  0.116 s    [User: 0.163 s, System: 0.197 s]
  Range (min … max):    9.778 s … 10.176 s    10 runs

Nameko service running python 3.9.15 ( with Girolle client )

hyperfine -N --warmup 3 'target/release/examples/simple_sender'
Benchmark 1: target/release/examples/simple_sender
  Time (mean ± σ):     11.532 s ±  0.091 s    [User: 0.199 s, System: 0.213 s]
  Range (min … max):   11.396 s … 11.670 s    10 runs

Nameko service running python 3.9.15 ( with Nameko client )

hyperfine -N --warmup 3 'python nameko_test.py'
Benchmark 1: python nameko_test.py
  Time (mean ± σ):     15.587 s ±  0.325 s    [User: 1.443 s, System: 0.420 s]
  Range (min … max):   15.181 s … 16.034 s    10 runs

Fibonacci benchmark

The benchmark use a static set of random int to compute fibonacci.

nameko_fib_payload.py
nameko_service.py 03 min 58.11 s
simple_macro.rs 6.99 s

Macro-overhead benchmark

The benchmark is done to test the overhead of the macro.

benchmark