1. 新增加常见数据增强方式
2018.10.07 新增
-
min_side - resize and crop preserving aspect ratio, default 0 (disabled);
-
max_rotation_angle - max angle for an image rotation, default 0;
-
contrast_brightness_adjustment - enable/disable contrast adjustment, default false;
-
smooth_filtering - enable/disable smooth filterion, default false;
-
min_contrast - min contrast multiplier (min alpha), default 0.8;
-
max_contrast - min contrast multiplier (max alpha), default 1.2;
-
max_brightness_shift - max brightness shift in positive and negative directions (beta), default 5;
-
max_smooth - max smooth multiplier, default 6;
-
max_color_shift - max color shift along RGB axes
-
apply_probability - how often every transformation should be applied, default 0.5;
-
debug_params - enable/disable printing tranformation parameters, default false;
使用方法:
在网络的 prototxt 指定:
layer {
name: "data"
type: "ImageData"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: true
contrast_brightness_adjustment: true
smooth_filtering: true
min_side_min: 256
min_side_max: 480
crop_size: 224
mean_file: "imagenet_mean.binaryproto"
min_contrast: 0.8
max_contrast: 1.2
max_smooth: 6
apply_probability: 0.5
max_color_shift: 20
debug_params: false
}
image_data_param {
source: "train_list.txt"
batch_size: 64
}
}
在测试(testing phase)时 :
layer {
name: "data"
type: "ImageData"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mirror: false
min_side: 256
crop_size: 224
mean_file: "imagenet_mean.binaryproto"
}
image_data_param {
source: "test_list.txt"
batch_size: 32
}
}
Caffe is released under the BSD 2-Clause license. The BAIR/BVLC reference models are released for unrestricted use.
Please cite Caffe in your publications if it helps your research:
@article{jia2014caffe,
Author = {Jia, Yangqing and Shelhamer, Evan and Donahue, Jeff and Karayev, Sergey and Long, Jonathan and Girshick, Ross and Guadarrama, Sergio and Darrell, Trevor},
Journal = {arXiv preprint arXiv:1408.5093},
Title = {Caffe: Convolutional Architecture for Fast Feature Embedding},
Year = {2014}
}