Skip to content

Commit

Permalink
add matmul benchmark
Browse files Browse the repository at this point in the history
  • Loading branch information
shmsong committed Sep 7, 2022
1 parent 92a01fb commit f12b3cc
Show file tree
Hide file tree
Showing 2 changed files with 307 additions and 0 deletions.
1 change: 1 addition & 0 deletions benchmarks/cpp/nvfuser/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@ if(USE_CUDA)
softmax_backward.cpp
scale_bias_relu.cpp
transpose.cpp
matmul.cpp
timm.cpp
utils.cpp
main.cpp)
Expand Down
306 changes: 306 additions & 0 deletions benchmarks/cpp/nvfuser/matmul.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,306 @@
#include <torch/csrc/jit/codegen/cuda/arith.h>
#include <torch/csrc/jit/codegen/cuda/executor.h>
#include <torch/csrc/jit/codegen/cuda/fusion.h>
#include <torch/csrc/jit/codegen/cuda/ir_all_nodes.h>
#include <torch/csrc/jit/codegen/cuda/ir_utils.h>
#include <torch/csrc/jit/codegen/cuda/lower2device.h>
#include <torch/csrc/jit/codegen/cuda/ops/all_ops.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/all_schedulers.h>
#include <torch/csrc/jit/codegen/cuda/scheduler/matmul.h>

#include <benchmark/benchmark.h>

#include <cuda_runtime.h>

#include <benchmarks/cpp/nvfuser/utils.h>

using namespace torch::jit::fuser::cuda;

bool cudaArchGuardShouldSkip(int required_major, int required_minor) {
int capability_major = at::cuda::getCurrentDeviceProperties()->major;
int capability_minor = at::cuda::getCurrentDeviceProperties()->minor;

if (capability_major < required_major ||
(capability_major == required_major &&
capability_minor < required_minor)) {
return true;
}
return false;
}

bool hasRequiredSmemSize(size_t required_size) {
// Only checking device 0
return at::cuda::getDeviceProperties(0)->sharedMemPerBlockOptin >=
required_size;
}

#define NVFUSER_BENCHMARK_ARCH_SMEM_GUARD( \
REQUIRED_MAJOR, REQUIRED_MINOR, SMEM_SIZE, STATE) \
if (cudaArchGuardShouldSkip(REQUIRED_MAJOR, REQUIRED_MINOR) || \
!hasRequiredSmemSize(SMEM_SIZE)) { \
STATE.SkipWithError("Unsupported arch or not enough smem!"); \
return; \
}

// util to track support matmul operand layout.
using MatmulLayout = MmaOptions::MmaInputLayout;

static constexpr std::array<MatmulLayout, 3> kAllSupportedLayout = {
MatmulLayout::TT,
MatmulLayout::NT,
MatmulLayout::TN};

// Generic interface to get matmul op with the given layout.
TensorView* matmul(TensorView* a, TensorView* b, MatmulLayout layout) {
TORCH_CHECK(
a->nDims() == 2 && b->nDims() == 2, "only pure matmuls for these tests");
TensorView *tv2 = nullptr, *tv0b = nullptr, *tv1b = nullptr;
switch (layout) {
case MatmulLayout::TT:
tv0b = broadcast(a, {false, false, true});
tv1b = broadcast(b, {true, false, false});
tv2 = fusedMultiplySum(tv0b, tv1b, {1});
break;
case MatmulLayout::TN:
tv0b = broadcast(a, {false, true, false});
tv1b = broadcast(b, {true, false, false});
tv2 = fusedMultiplySum(tv0b, tv1b, {2});
break;
case MatmulLayout::NT:
tv0b = broadcast(a, {false, false, true});
tv1b = broadcast(b, {false, true, false});
tv2 = fusedMultiplySum(tv0b, tv1b, {0});
break;
default:
TORCH_CHECK(false, "unsupported data layout.");
}
return tv2;
}

// Utility to generate matmul input tensors based on given layout
at::Tensor atMatmul(at::Tensor a, at::Tensor b, MatmulLayout layout) {
switch (layout) {
case MatmulLayout::TT:
return a.matmul(b);
case MatmulLayout::TN:
return a.matmul(b.t());
case MatmulLayout::NT:
return a.t().matmul(b);
default:
TORCH_CHECK(false, "unsupported data layout.");
}
return at::Tensor();
}

// Utility to generate reference results based on given layout
std::pair<at::Tensor, at::Tensor> fp16MatmulAtInput(
int M,
int N,
int K,
MatmulLayout layout) {
auto options = at::TensorOptions().dtype(at::kHalf).device(at::kCUDA, 0);

switch (layout) {
case MatmulLayout::TT:
return std::make_pair(
at::randn({M, K}, options), at::randn({K, N}, options));
case MatmulLayout::TN:
return std::make_pair(
at::randn({M, K}, options), at::randn({N, K}, options));
case MatmulLayout::NT:
return std::make_pair(
at::randn({K, M}, options), at::randn({K, N}, options));
default:
TORCH_CHECK(false, "unsupported data layout.");
}
return std::make_pair(at::Tensor(), at::Tensor());
}

// TODO: separate compute and schedule definition once the can schedule
// logic and pattern matching is ready.
void setupMatmul(Fusion* fusion, MatmulLayout layout, MatmulParam params) {
// Only hgemm on the initial setup
auto a = makeContigTensor(2, DataType::Half);
auto b = makeContigTensor(2, DataType::Half);

auto c = matmul(a, b, layout);

fusion->addInput(a);
fusion->addInput(b);
fusion->addOutput(c);

scheduleMatmul(c, a, b, params);
}

static void SingleMatmulBase(
benchmark::State& benchmark_state,
MatmulLayout layout,
MatmulParam params) {
std::vector<int64_t> input_mnk{
benchmark_state.range(0),
benchmark_state.range(1),
benchmark_state.range(2)};

auto fusion_ptr = std::make_unique<Fusion>();
auto fusion = fusion_ptr.get();
FusionGuard fg(fusion);

// Define fusion graph
setupMatmul(fusion, layout, params);

// inputs
at::manual_seed(0);

// Tensor inputs
auto inputs = fp16MatmulAtInput(
input_mnk.at(0), input_mnk.at(1), input_mnk.at(2), layout);

// Always use 32b indexing mode for now.
CompileOptions co;
co.index_mode = KernelIndexMode::INT32;

// Compile kernel
FusionExecutor fe;
fe.compileFusion(fusion, {inputs.first, inputs.second}, LaunchParams(), co);

// Warm up run
auto outputs = fe.runFusion({inputs.first, inputs.second});
fe.setMeasureKernelTimeFlag(true);

// Sync everything up before we start
for (auto _ : benchmark_state) {
clearL2Cache();
auto outputs = fe.runFusion({inputs.first, inputs.second});
benchmark_state.SetIterationTime(fe.kernelTimeMs() / 1000.0);
}
// Sync everything up before we're finished, don't want to run ahead on the
// cpu while benchmarking.
cudaDeviceSynchronize();

// TODO: FLOPS calculation
}

static void EagerModeMatmul(
benchmark::State& benchmark_state,
MatmulLayout layout) {
std::vector<int64_t> input_mnk{
benchmark_state.range(0),
benchmark_state.range(1),
benchmark_state.range(2)};

at::manual_seed(0);

auto inputs = fp16MatmulAtInput(
input_mnk.at(0), input_mnk.at(1), input_mnk.at(2), layout);

// warm up run
auto outputs = atMatmul(inputs.first, inputs.second, layout);

for (auto _ : benchmark_state) {
clearL2Cache();
CudaKernelTimer timer;
outputs = atMatmul(inputs.first, inputs.second, layout);
benchmark_state.SetIterationTime(timer.elapsed() / 1000.0);
}
// Sync everything up before we're finished, don't want to run ahead on the
// cpu while benchmarking.
cudaDeviceSynchronize();
}

// Actual benchmarking
// -----------------------------------------------------------------

size_t getSmemSize(GemmTile cta_tile, int stage_number) {
return ((cta_tile.m * cta_tile.k) + (cta_tile.n * cta_tile.k)) *
dataTypeSize(DataType::Half) * stage_number;
}

// TODO: this part eventually will be automated by heuristics
MatmulParam getMatmulParams(
GemmTile cta_tile,
int stage_number,
MatmulLayout layout) {
MatMulTileOptions gemm_tile;
gemm_tile.cta_tile = cta_tile;
// TODO: pipe through split K
gemm_tile.warp_tile = GemmTile(64, 64, cta_tile.k);
gemm_tile.instruction_tile = GemmTile(16, 16, 16);

// Collect mma swizzle info
auto mma_builder =
MmaBuilder(MmaOptions::MacroType::Ampere_16_16_16, gemm_tile)
.layout(layout);

MatmulParam params(mma_builder);
params.tile_sizes = gemm_tile;
params.async_gmem_load_operands = true;
params.double_buffer_options.double_buffer_smem_write = true;
params.double_buffer_options.double_buffer_smem_read = true;
params.double_buffer_options.smem_double_buffer_stage = stage_number;

return params;
}

static void Nvfuser_Matmul_4warp(
benchmark::State& benchmark_state,
MatmulLayout layout) {
auto cta_tile = GemmTile(128, 128, 64);
int number_of_stage = 2;

auto params = getMatmulParams(cta_tile, number_of_stage, layout);

// Need a +4 on the smem size for nvfuser zero.
NVFUSER_BENCHMARK_ARCH_SMEM_GUARD(
8, 0, getSmemSize(cta_tile, number_of_stage) + 4, benchmark_state);

// Run benchmark:
SingleMatmulBase(benchmark_state, layout, params);
}

static void Nvfuser_Matmul_8warp(
benchmark::State& benchmark_state,
MatmulLayout layout) {
auto cta_tile = GemmTile(256, 128, 64);
int number_of_stage = 2;

auto params = getMatmulParams(cta_tile, number_of_stage, layout);

// Need a +4 on the smem size for nvfuser zero.
NVFUSER_BENCHMARK_ARCH_SMEM_GUARD(
8, 0, getSmemSize(cta_tile, number_of_stage) + 4, benchmark_state);

// Run benchmark:
SingleMatmulBase(benchmark_state, layout, params);
}

// ----------------------------- Benchmark Instantiation
// -------------------------------------

// Common utils:
#define NO_TILE_QUANTIZATION_ARGS \
Args({2048, 3456, 1024})->Unit(benchmark::kMicrosecond)->UseManualTime();

#define ForAllLayouts(run) \
run(TT, MatmulLayout::TT); \
run(TN, MatmulLayout::TN); \
run(NT, MatmulLayout::NT)

// Instantiations:
#define Nvfuser_4warp_test(layout_label, layout) \
BENCHMARK_CAPTURE( \
Nvfuser_Matmul_4warp, no_quant_nvfuser_4warp_##layout_label, layout) \
->NO_TILE_QUANTIZATION_ARGS

#define Nvfuser_8warp_test(layout_label, layout) \
BENCHMARK_CAPTURE( \
Nvfuser_Matmul_8warp, no_quant_nvfuser_8warp_##layout_label, layout) \
->NO_TILE_QUANTIZATION_ARGS

#define Eagermode_test(layout_label, layout) \
BENCHMARK_CAPTURE( \
EagerModeMatmul, no_quant_eagermode_##layout_label, layout) \
->NO_TILE_QUANTIZATION_ARGS

ForAllLayouts(Nvfuser_4warp_test);
ForAllLayouts(Nvfuser_8warp_test);
ForAllLayouts(Eagermode_test);

0 comments on commit f12b3cc

Please sign in to comment.