Skip to content

Commit

Permalink
Merge branch 'main' into lazy-export
Browse files Browse the repository at this point in the history
  • Loading branch information
meatybobby authored Nov 26, 2024
2 parents 000202a + 5d97b70 commit b7e1958
Show file tree
Hide file tree
Showing 24 changed files with 310 additions and 60 deletions.
13 changes: 11 additions & 2 deletions .github/workflows/_test_template.yml
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,16 @@ jobs:
ARG=("--runtime=nvidia --gpus all")
fi
docker run --rm -d --name nemo_container_${{ github.run_id }} ${ARG[@]} --shm-size=64g --env TRANSFORMERS_OFFLINE=0 --env HYDRA_FULL_ERROR=1 --volume /mnt/datadrive/TestData:/home/TestData nemoci.azurecr.io/nemo_container:${{ github.run_id }} bash -c "sleep $(( ${{ inputs.TIMEOUT }} * 60 + 60 ))"
docker run \
--rm \
-d \
--name nemo_container_${{ github.run_id }} ${ARG[@]} \
--shm-size=64g \
--env TRANSFORMERS_OFFLINE=0 \
--env HYDRA_FULL_ERROR=1 \
--env HF_HOME=/home/TestData/HF_HOME \
--volume /mnt/datadrive/TestData:/home/TestData nemoci.azurecr.io/nemo_container:${{ github.run_id }} \
bash -c "sleep $(( ${{ inputs.TIMEOUT }} * 60 + 60 ))"
- id: main
name: Run main script
Expand Down Expand Up @@ -95,4 +104,4 @@ jobs:
if: always()
run: |
docker container stop nemo_container_${{ github.run_id }} || true
docker container rm nemo_container_${{ github.run_id }} || true
docker container rm nemo_container_${{ github.run_id }} || true
6 changes: 3 additions & 3 deletions examples/llm/peft/hf.py
Original file line number Diff line number Diff line change
Expand Up @@ -76,11 +76,11 @@ def formatting_prompts_func(examples):
# See: https://github.com/Lightning-AI/pytorch-lightning/blob/8ad3e29816a63d8ce5c00ac104b14729a4176f4f/src/lightning/pytorch/plugins/precision/fsdp.py#L81
grad_clip = None
use_dist_samp = False
tokenizer = llm.HfAutoModelForCausalLM.configure_tokenizer(args.model)
tokenizer = llm.HFAutoModelForCausalLM.configure_tokenizer(args.model)

llm.api.finetune(
model=llm.HfAutoModelForCausalLM(args.model),
data=llm.HfDatasetDataModule(
model=llm.HFAutoModelForCausalLM(args.model),
data=llm.HFDatasetDataModule(
mk_hf_dataset(tokenizer.tokenizer), pad_token_id=tokenizer.tokenizer.eos_token_id
),
trainer=nl.Trainer(
Expand Down
2 changes: 1 addition & 1 deletion examples/llm/sft/hf.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,7 +84,7 @@ def squad(tokenizer) -> pl.LightningDataModule:

from nemo.lightning.pytorch.accelerate.transformer_engine import te_accelerate

model = llm.HfAutoModelForCausalLM(model_name=args.model, model_accelerator=model_accelerator)
model = llm.HFAutoModelForCausalLM(model_name=args.model, model_accelerator=model_accelerator)
tokenizer = model.tokenizer

llm.api.finetune(
Expand Down
6 changes: 3 additions & 3 deletions nemo/collections/llm/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@
AlpacaDataModule,
DollyDataModule,
FineTuningDataModule,
HfDatasetDataModule,
HFDatasetDataModule,
MockDataModule,
PreTrainingDataModule,
SquadDataModule,
Expand Down Expand Up @@ -64,7 +64,7 @@
GPTConfig126M,
GPTConfig175B,
GPTModel,
HfAutoModelForCausalLM,
HFAutoModelForCausalLM,
Llama2Config7B,
Llama2Config13B,
Llama2Config70B,
Expand Down Expand Up @@ -218,7 +218,7 @@
"dolly",
"peft",
"hf_dataset",
"HfAutoModelForCausalLM",
"HFAutoModelForCausalLM",
]


Expand Down
4 changes: 2 additions & 2 deletions nemo/collections/llm/gpt/data/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
from nemo.collections.llm.gpt.data.alpaca import AlpacaDataModule
from nemo.collections.llm.gpt.data.dolly import DollyDataModule
from nemo.collections.llm.gpt.data.fine_tuning import FineTuningDataModule
from nemo.collections.llm.gpt.data.hf_dataset import HfDatasetDataModule
from nemo.collections.llm.gpt.data.hf_dataset import HFDatasetDataModule
from nemo.collections.llm.gpt.data.mock import MockDataModule
from nemo.collections.llm.gpt.data.pre_training import PreTrainingDataModule, build_pretraining_datamodule
from nemo.collections.llm.gpt.data.squad import SquadDataModule
Expand All @@ -28,5 +28,5 @@
"MockDataModule",
"PreTrainingDataModule",
"build_pretraining_datamodule",
"HfDatasetDataModule",
"HFDatasetDataModule",
]
4 changes: 2 additions & 2 deletions nemo/collections/llm/gpt/data/api.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@
import nemo_run as run

from nemo.collections.llm.gpt.data.dolly import DollyDataModule
from nemo.collections.llm.gpt.data.hf_dataset import HfDatasetDataModule
from nemo.collections.llm.gpt.data.hf_dataset import HFDatasetDataModule
from nemo.collections.llm.gpt.data.mock import MockDataModule
from nemo.collections.llm.gpt.data.squad import SquadDataModule

Expand All @@ -42,7 +42,7 @@ def dolly() -> pl.LightningDataModule:
@run.cli.factory
@run.autoconvert
def hf_dataset(dataset: str) -> pl.LightningDataModule:
return HfDatasetDataModule(dataset=dataset, global_batch_size=16, micro_batch_size=2)
return HFDatasetDataModule(dataset=dataset, global_batch_size=16, micro_batch_size=2)


__all__ = ["mock", "squad", "dolly", "hf_dataset"]
4 changes: 2 additions & 2 deletions nemo/collections/llm/gpt/data/hf_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
from nemo.lightning.pytorch.plugins import MegatronDataSampler


class HfDatasetDataModule(pl.LightningDataModule):
class HFDatasetDataModule(pl.LightningDataModule):
def __init__(
self,
dataset,
Expand Down Expand Up @@ -88,7 +88,7 @@ def train_dataloader(self, collate_fn=None):
from nemo.lightning.data import add_megatron_sampler

if collate_fn is None:
collate_fn = lambda x: HfDatasetDataModule.collate_fn(x, pad_token_id=self.pad_token_id)
collate_fn = lambda x: HFDatasetDataModule.collate_fn(x, pad_token_id=self.pad_token_id)

return DataLoader(
self.dataset,
Expand Down
4 changes: 2 additions & 2 deletions nemo/collections/llm/gpt/model/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@
Gemma2Config27B,
Gemma2Model,
)
from nemo.collections.llm.gpt.model.hf_auto_model_for_causal_lm import HfAutoModelForCausalLM
from nemo.collections.llm.gpt.model.hf_auto_model_for_causal_lm import HFAutoModelForCausalLM
from nemo.collections.llm.gpt.model.llama import (
CodeLlamaConfig7B,
CodeLlamaConfig13B,
Expand Down Expand Up @@ -191,5 +191,5 @@
"transformer_engine_layer_spec",
"transformer_engine_full_layer_spec",
"local_layer_spec",
"HfAutoModelForCausalLM",
"HFAutoModelForCausalLM",
]
4 changes: 2 additions & 2 deletions nemo/collections/llm/gpt/model/hf_auto_model_for_causal_lm.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ def masked_cross_entropy(logits, targets, mask=None):
return F.cross_entropy(logits, targets)


class HfAutoModelForCausalLM(pl.LightningModule, io.IOMixin, fn.FNMixin):
class HFAutoModelForCausalLM(pl.LightningModule, io.IOMixin, fn.FNMixin):
def __init__(
self,
model_name='gpt2',
Expand All @@ -57,7 +57,7 @@ def __init__(
@property
def tokenizer(self):
if self._tokenizer is None:
self._tokenizer = HfAutoModelForCausalLM.configure_tokenizer(self.model_name, self.trust_remote_code)
self._tokenizer = HFAutoModelForCausalLM.configure_tokenizer(self.model_name, self.trust_remote_code)
return self._tokenizer

@tokenizer.setter
Expand Down
20 changes: 10 additions & 10 deletions nemo/collections/llm/recipes/hf_auto_model_for_causal_lm.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@
from nemo import lightning as nl
from nemo.collections.llm.api import finetune, pretrain
from nemo.collections.llm.gpt.data.mock import MockDataModule
from nemo.collections.llm.gpt.model.hf_auto_model_for_causal_lm import HfAutoModelForCausalLM
from nemo.collections.llm.gpt.model.hf_auto_model_for_causal_lm import HFAutoModelForCausalLM
from nemo.collections.llm.peft.lora import LoRA
from nemo.collections.llm.recipes.log.default import default_log, default_resume, tensorboard_logger
from nemo.collections.llm.recipes.optim.adam import pytorch_adam_with_cosine_annealing
Expand All @@ -35,23 +35,23 @@
@run.cli.factory(name=NAME)
def model(model_name, load_pretrained_weights) -> run.Config[pl.LightningModule]:
"""
Factory function to create HfAutoModelForCausalLM model configurations.
Factory function to create HFAutoModelForCausalLM model configurations.
Args:
model_name (str): Model id on HF.
Returns:
run.Config[pl.LightningModule]: Configuration for the HfAutoModelForCausalLM.
run.Config[pl.LightningModule]: Configuration for the HFAutoModelForCausalLM.
Examples:
CLI usage:
$ nemo llm pretrain --factory 'HfAutoModelForCausalLM(model_name="mistralai/Mistral-Nemo-Instruct-2407")'
$ nemo llm pretrain --factory 'HFAutoModelForCausalLM(model_name="mistralai/Mistral-Nemo-Instruct-2407")'
Python API usage:
>>> model_config = model(model_name="mistralai/Mistral-Nemo-Instruct-2407")
>>> print(model_config)
"""
return run.Config(HfAutoModelForCausalLM, model_name=model_name, load_pretrained_weights=load_pretrained_weights)
return run.Config(HFAutoModelForCausalLM, model_name=model_name, load_pretrained_weights=load_pretrained_weights)


def trainer(
Expand All @@ -69,7 +69,7 @@ def trainer(
gradient_clip_val: float = 1.0,
) -> run.Config[nl.Trainer]:
"""
Configure the NeMo Lightning Trainer for HfAutoModelForCausalLM.
Configure the NeMo Lightning Trainer for HFAutoModelForCausalLM.
This function sets up the distributed training strategy and other training parameters.
Expand All @@ -91,7 +91,7 @@ def trainer(
Examples:
CLI usage:
$ nemo llm pretrain trainer=HfAutoModelForCausalLM ...
$ nemo llm pretrain trainer=HFAutoModelForCausalLM ...
Python API usage:
>>> trainer_config = trainer(num_nodes=2, num_gpus_per_node=8)
Expand Down Expand Up @@ -131,7 +131,7 @@ def pretrain_recipe(
model_name: str = '',
) -> run.Partial:
"""
Create a pre-training recipe for a HfAutoModelForCausalLM model.
Create a pre-training recipe for a HFAutoModelForCausalLM model.
This function sets up a complete configuration for pre-training, including
model, trainer, data, logging, optimization, and resumption settings.
Expand All @@ -148,7 +148,7 @@ def pretrain_recipe(
Examples:
CLI usage:
$ nemo llm pretrain --factory 'HfAutoModelForCausalLM(model_name="mistralai/Mistral-Nemo-Instruct-2407")'
$ nemo llm pretrain --factory 'HFAutoModelForCausalLM(model_name="mistralai/Mistral-Nemo-Instruct-2407")'
Python API usage:
>>> recipe = pretrain_recipe(name="auto_pretrain", num_nodes=2, model_name="mistralai/Mistral-Nemo-Instruct-2407")
Expand Down Expand Up @@ -179,7 +179,7 @@ def finetune_recipe(
model_name: str = '',
) -> run.Partial:
"""
Create a fine-tuning recipe for a HfAutoModelForCausalLM model.
Create a fine-tuning recipe for a HFAutoModelForCausalLM model.
This function sets up a complete configuration for fine-tuning, including
model, trainer, data, logging, optimization, and resumption settings.
Expand Down
3 changes: 3 additions & 0 deletions nemo/export/tensorrt_llm.py
Original file line number Diff line number Diff line change
Expand Up @@ -480,10 +480,13 @@ def export(

tokenizer_path = os.path.join(nemo_export_dir, "tokenizer.model")
tokenizer_path_nemo2 = os.path.join(nemo_export_dir, "nemo_context")
vocab_path = os.path.join(nemo_export_dir, "vocab.json")
if os.path.exists(tokenizer_path):
shutil.copy(tokenizer_path, self.model_dir)
elif os.path.exists(tokenizer_path_nemo2):
shutil.copytree(tokenizer_path_nemo2, Path(self.model_dir) / "nemo_context")
elif os.path.exists(vocab_path):
shutil.copy(vocab_path, os.path.join(self.model_dir, "vocab.json"))
else:
self.tokenizer.save_pretrained(os.path.join(self.model_dir, 'huggingface_tokenizer'))

Expand Down
123 changes: 123 additions & 0 deletions nemo/export/tiktoken_tokenizer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,123 @@
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import base64
import json
from pathlib import Path
from typing import Dict, Optional

import numpy as np
import tiktoken
import torch

PATTERN_TIKTOKEN = "[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
DEFAULT_TIKTOKEN_MAX_VOCAB = 2**17 # 131072
SPECIAL_TOKENS = ["<unk>", "<s>", "</s>"]
SPECIAL_TOKEN_TEMPLATE = "<SPECIAL_{id}>"


def reload_mergeable_ranks(
path: str,
max_vocab: Optional[int] = None,
) -> Dict[bytes, int]:
"""
Reload the tokenizer JSON file and convert it to Tiktoken format.
"""
assert path.endswith(".json")

# reload vocab
with open(path, "r", encoding='utf-8') as f:
vocab = json.load(f)
assert isinstance(vocab, list)
print(f"Vocab size: {len(vocab)}")
if max_vocab is not None:
vocab = vocab[:max_vocab]
print(f"Cutting vocab to first {len(vocab)} tokens.")

# build ranks
ranks: Dict[bytes, int] = {}
for i, x in enumerate(vocab):
assert x.keys() == {"rank", "token_bytes", "token_str"}
assert x["rank"] == i
merge = base64.b64decode(x["token_bytes"])
assert i >= 256 or merge == bytes([i])
ranks[merge] = x["rank"]

# sanity check
assert len(ranks) == len(vocab)
assert set(ranks.values()) == set(range(len(ranks)))

return ranks


class TiktokenTokenizer:
def __init__(self, vocab_file: str):

self.num_special_tokens = 1000
vocab_size = DEFAULT_TIKTOKEN_MAX_VOCAB
pattern = PATTERN_TIKTOKEN
special_tokens = SPECIAL_TOKENS.copy()
inner_vocab_size = vocab_size - self.num_special_tokens

token2id = reload_mergeable_ranks(vocab_file, max_vocab=inner_vocab_size)
self.tokenizer = tiktoken.Encoding(
name=Path(vocab_file).parent.name,
pat_str=pattern,
mergeable_ranks=token2id,
special_tokens={}, # special tokens are handled manually
)

# BOS / EOS / Pad token IDs
self._bos_id = special_tokens.index("<s>")
self._eos_id = special_tokens.index("</s>")

def encode(self, text):
tokens = self.tokenizer.encode(text)
tokens = [t + self.num_special_tokens for t in tokens]
return tokens

def decode(self, tokens):
# Filter out special tokens and adjust the remaining tokens
adjusted_tokens = [
t - self.num_special_tokens
for t in tokens
if t not in {self._bos_id, self._eos_id} and t >= self.num_special_tokens
]

# Decode only if there are tokens left after filtering
if adjusted_tokens:
return self.tokenizer.decode(adjusted_tokens)
else:
return "" # Return an empty string if all tokens were filtered out

def batch_decode(self, ids):
if isinstance(ids, np.ndarray) or torch.is_tensor(ids):
ids = ids.tolist()

if isinstance(ids[0], list):
ids = ids[0]

return self.decode(ids)

@property
def pad_id(self):
return self._eos_id

@property
def bos_token_id(self):
return self._bos_id

@property
def eos_token_id(self):
return self._eos_id
Loading

0 comments on commit b7e1958

Please sign in to comment.