Skip to content

Commit

Permalink
Merge branch 'main' into anders/new-jupyter-path
Browse files Browse the repository at this point in the history
  • Loading branch information
andeplane authored Oct 5, 2024
2 parents 4cb1da6 + 4060c74 commit 85c045e
Show file tree
Hide file tree
Showing 6 changed files with 271 additions and 98 deletions.
125 changes: 125 additions & 0 deletions jupyterlite/content/lammps_logfile/File.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,125 @@
import numpy as np
import pandas as pd
from io import BytesIO, StringIO

class File:
"""Class for handling lammps log files.
Parameters
----------------------
:param ifile: path to lammps log file
:type ifile: string or file
"""
def __init__(self, ifile):
# Identifiers for places in the log file
self.start_thermo_strings = ["Memory usage per processor", "Per MPI rank memory allocation"]
self.stop_thermo_strings = ["Loop time", "ERROR"]
self.data_dict = {}
self.keywords = []
self.output_before_first_run = ""
self.partial_logs = []
if hasattr(ifile, "read"):
self.logfile = ifile
else:
self.logfile = open(ifile, 'r')
self.read_file_to_dict()

def read_file_to_dict(self):
contents = self.logfile.readlines()
keyword_flag = False
before_first_run_flag = True
i = 0
while i < len(contents):
line = contents[i]
if before_first_run_flag:
self.output_before_first_run += line

if keyword_flag:
keywords = line.split()
tmpString = ""
# Check wheter any of the thermo stop strigs are in the present line
while not sum([string in line for string in self.stop_thermo_strings]) >= 1:
if "\n" in line:
tmpString+=line
i+=1
if i<len(contents):
line = contents[i]
else:
break
partialLogContents = pd.read_table(StringIO(tmpString), sep=r'\s+')

if (self.keywords != keywords):
# If the log keyword changes, i.e. the thermo data to be outputted chages,
# we flush all prevous log data. This is a limitation of this implementation.
self.flush_dict_and_set_new_keyword(keywords)

self.partial_dict = {}
for name in keywords:
self.data_dict[name] = np.append(self.data_dict[name],partialLogContents[name])
self.partial_dict[name] = np.append(np.asarray([]), partialLogContents[name])
self.partial_logs.append(self.partial_dict)
keyword_flag = False

# Check whether the string matches any of the start string identifiers
if sum([line.startswith(string) for string in self.start_thermo_strings]) >= 1:
keyword_flag = True
before_first_run_flag = False
i += 1

def flush_dict_and_set_new_keyword(self, keywords):
self.data_dict = {}
for entry in keywords:
self.data_dict[entry] = np.asarray([])
self.keywords = keywords

def get(self, entry_name, run_num=-1):
"""Get time-series from log file by name.
Paramerers
--------------------
:param entry_name: Name of the entry, for example "Temp"
:type entry_name: str
:param run_num: Lammps simulations commonly involve several run-commands. Here you may choose what run you want the log data from. Default of :code:`-1` returns data from all runs concatenated
:type run_num: int
If the rows in the log file changes between runs, the logs are being flushed.
"""

if run_num == -1:
if entry_name in self.data_dict.keys():
return self.data_dict[entry_name]
else:
return None
else:
if len(self.partial_logs) > run_num:
partial_log = self.partial_logs[run_num]
if entry_name in partial_log.keys():
return partial_log[entry_name]
else:
return None
else:
return None

def get_keywords(self, run_num=-1):
"""Return list of available data columns in the log file."""
if run_num == -1:
return sorted(self.keywords)
else:
if len(self.partial_logs) > run_num:
return sorted(list(self.partial_logs[run_num].keys()))
else:
return None

def to_exdir_group(self, name, exdirfile):
group = exdirfile.require_group(name)
for i, log in enumerate(self.partial_logs):
subgroup = group.require_group(str(i))
for key, value in log.items():
key = key.replace("/", ".")
subgroup.create_dataset(key, data=value)



def get_num_partial_logs(self):
return len(self.partial_logs)
3 changes: 3 additions & 0 deletions jupyterlite/content/lammps_logfile/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
from .File import File
from .utils import running_mean, get_color_value, get_matlab_color
from .cmd_interface import run
30 changes: 30 additions & 0 deletions jupyterlite/content/lammps_logfile/cmd_interface.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
from lammps_logfile import File
from lammps_logfile import running_mean
import argparse
import matplotlib.pyplot as plt

def get_parser():
parser = argparse.ArgumentParser(description="Plot contents from lammps log files")
parser.add_argument("input_file", type=str, help="Lammps log file containing thermo output from lammps simulation.")
parser.add_argument("-x", type=str, default="Time", help="Data to plot on the first axis")
parser.add_argument("-y", type=str, nargs="+", help="Data to plot on the second axis. You can supply several names to get several plot lines in the same figure.")
parser.add_argument("-a", "--running_average", type=int, default=1, help="Optionally average over this many log entries with a running average. Some thermo properties fluctuate wildly, and often we are interested in te running average of properties like temperature and pressure.")
return parser

def run():
args = get_parser().parse_args()
log = File(args.input_file)
x = log.get(args.x)
print(x)
if args.running_average >= 2:
x = running_mean(x, args.running_average)
for y in args.y:
data = log.get(y)
print(data)
if args.running_average >= 2:
data = running_mean(data, args.running_average)

plt.plot(x, data, label=y)
plt.legend()
plt.show()

63 changes: 63 additions & 0 deletions jupyterlite/content/lammps_logfile/utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
import numpy as np
import matplotlib

def running_mean(data, N):
"""Calculate running mean of an array-like dataset.
Parameters
--------------------
:param data: The array
:type data: 1d array-like
:param N: Width of the averaging window
:type N: int
"""

data = np.asarray(data)
if N == 1:
return data
else:
retArray = np.zeros(data.size)*np.nan
padL = int(N/2)
padR = N-padL-1
retArray[padL:-padR] = np.convolve(data, np.ones((N,))/N, mode='valid')
return retArray

def get_color_value(value, minValue, maxValue, cmap='viridis'):
"""Get color from colormap.
Parameters
-----------------
:param value: Value used tpo get color from colormap
:param minValue: Minimum value in colormap. Values below this value will saturate on the lower color of the colormap.
:param maxValue: Maximum value in colormap. Values above this value will saturate on the upper color of the colormap.
:returns: 4-vector containing colormap values.
This is useful if you are plotting data from several simulations, and want to color them based on some parameters changing between the simulations. For example, you may want the color to gradually change along a clormap as the temperature increases.
"""
diff = maxValue-minValue
cmap = matplotlib.cm.get_cmap(cmap)
rgba = cmap((value-minValue)/diff)
return rgba

def get_matlab_color(i):
"""Get colors from matlabs standard color order.
Parameters
-------------
:param i: Index. Cycles with a period of 7, so calling with 1 returns the same color as calling with 8.
:type i: int
:returns: color as 3-vector
"""
colors = np.asarray([ [0, 0.447000000000000, 0.741000000000000],
[0.850000000000000, 0.325000000000000, 0.098000000000000],
[0.929000000000000, 0.694000000000000, 0.125000000000000],
[0.494000000000000, 0.184000000000000, 0.556000000000000],
[0.466000000000000, 0.674000000000000, 0.188000000000000],
[0.301000000000000, 0.745000000000000, 0.933000000000000],
[0.635000000000000, 0.078000000000000, 0.184000000000000]])
return colors[ i%len(colors) ]
Loading

0 comments on commit 85c045e

Please sign in to comment.