Skip to content

Commit

Permalink
fix import torch
Browse files Browse the repository at this point in the history
  • Loading branch information
wuzhaoxin committed May 24, 2024
1 parent 9fd3660 commit b8ea05f
Showing 1 changed file with 3 additions and 43 deletions.
46 changes: 3 additions & 43 deletions xinference/model/llm/pytorch/intern_vl.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,9 +21,7 @@

import requests
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode

from ....model.utils import select_device
from ....types import (
Expand Down Expand Up @@ -205,47 +203,6 @@ def _image_to_piexl_values(images):
history.append(tuple(tmp))
return history, pixel_values

def _load_image(_url):
if _url.startswith("data:"):
logging.info("Parse url by base64 decoder.")
# https://platform.openai.com/docs/guides/vision/uploading-base-64-encoded-images
# e.g. f"data:image/jpeg;base64,{base64_image}"
_type, data = _url.split(";")
_, ext = _type.split("/")
data = data[len("base64,") :]
data = base64.b64decode(data.encode("utf-8"))

return Image.open(BytesIO(data)).convert("RGB")
else:
try:
response = requests.get(_url)
except requests.exceptions.MissingSchema:
return Image.open(_url).convert("RGB")
else:
return Image.open(BytesIO(response.content)).convert("RGB")

if not isinstance(content, str):
texts = []
image_urls = []
for c in content:
c_type = c.get("type")
if c_type == "text":
texts.append(c["text"])
elif c_type == "image_url":
image_urls.append(c["image_url"]["url"])
image_futures = []
with ThreadPoolExecutor() as executor:
for image_url in image_urls:
fut = executor.submit(_load_image, image_url)
image_futures.append(fut)
images = [fut.result() for fut in image_futures]
text = " ".join(texts)
if len(images) == 0:
return text
else:
return text, images
return content

def _find_closest_aspect_ratio(
self, aspect_ratio, target_ratios, width, height, image_size
):
Expand Down Expand Up @@ -309,6 +266,9 @@ def _dynamic_preprocess(
return processed_images

def _build_transform(self, input_size):
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode

MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose(
[
Expand Down

0 comments on commit b8ea05f

Please sign in to comment.