-
Notifications
You must be signed in to change notification settings - Fork 43
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
498 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,339 @@ | ||
import { | ||
Chart, TimeScale, LinearScale, registerables, | ||
// eslint-disable-next-line import/no-unresolved, import/extensions | ||
} from 'chartjs'; | ||
// eslint-disable-next-line import/no-unresolved, import/extensions | ||
import 'chartjs-adapter-luxon'; | ||
import { | ||
utils, | ||
} from '@adobe/rum-distiller'; | ||
import AbstractChart from './chart.js'; | ||
import { | ||
truncate, | ||
cssVariable, | ||
cwvInterpolationFn, | ||
INTERPOLATION_THRESHOLD, | ||
} from '../utils.js'; | ||
|
||
const { | ||
scoreBundle, | ||
} = utils; | ||
|
||
Chart.register(TimeScale, LinearScale, ...registerables); | ||
|
||
/** | ||
* The CWVPerfChart is a unique type of multi-series bar chart that | ||
* shows both the overall traffic levels as well as the distribution | ||
* of each of the three core web vitals values within the given date | ||
* range. | ||
*/ | ||
export default class CWVPerfChart extends AbstractChart { | ||
/** | ||
* Returns a function that can group the data bundles based on the | ||
* configuration of the chart. As this is a timeline chart, | ||
* the grouping is based on the time slot of the bundle, truncated | ||
* to the granularity of the chart. | ||
* @returns {function} A function that can group the data bundles | ||
*/ | ||
get groupBy() { | ||
const groupFn = (bundle) => { | ||
const slotTime = new Date(bundle.timeSlot); | ||
return truncate(slotTime, this.chartConfig.unit); | ||
}; | ||
|
||
groupFn.fillerFn = (existing) => { | ||
const endDate = this.chartConfig.endDate ? new Date(this.chartConfig.endDate) : new Date(); | ||
|
||
let startDate; | ||
if (!this.chartConfig.startDate) { | ||
// set start date depending on the unit | ||
startDate = new Date(endDate); | ||
// roll back to beginning of time | ||
if (this.chartConfig.unit === 'day') startDate.setDate(endDate.getDate() - 30); | ||
if (this.chartConfig.unit === 'hour') startDate.setDate(endDate.getDate() - 7); | ||
if (this.chartConfig.unit === 'week') startDate.setMonth(endDate.getMonth() - 12); | ||
if (this.chartConfig.unit === 'month') startDate.setMonth(endDate.getMonth() - 1); | ||
} else { | ||
startDate = new Date(this.chartConfig.startDate); | ||
} | ||
|
||
const slots = new Set(existing); | ||
const slotTime = new Date(startDate); | ||
// return Array.from(slots); | ||
let maxSlots = 1000; | ||
while (slotTime <= endDate) { | ||
const { unit } = this.chartConfig; | ||
slots.add(truncate(slotTime, unit)); | ||
if (this.chartConfig.unit === 'day') slotTime.setDate(slotTime.getDate() + 1); | ||
if (this.chartConfig.unit === 'hour') slotTime.setHours(slotTime.getHours() + 1); | ||
if (this.chartConfig.unit === 'week') slotTime.setDate(slotTime.getDate() + 7); | ||
if (this.chartConfig.unit === 'month') slotTime.setMonth(slotTime.getMonth() + 1); | ||
maxSlots -= 1; | ||
if (maxSlots < 0) { | ||
// eslint-disable-next-line no-console | ||
console.error('Too many slots'); | ||
break; | ||
} | ||
} | ||
return Array.from(slots); | ||
}; | ||
|
||
return groupFn; | ||
} | ||
|
||
render() { | ||
// eslint-disable-next-line no-undef | ||
this.chart = new Chart(this.elems.canvas, { | ||
type: 'line', | ||
data: { | ||
labels: [], | ||
datasets: [ | ||
{ | ||
label: 'Good CWV', | ||
backgroundColor: cssVariable('--spectrum-green-600'), | ||
borderColor: cssVariable('--spectrum-green-600'), | ||
tension: 0.2, | ||
pointRadius: 0, | ||
data: [], | ||
}, | ||
{ | ||
label: 'Needs Improvement CWV', | ||
backgroundColor: cssVariable('--spectrum-orange-600'), | ||
borderColor: cssVariable('--spectrum-orange-600'), | ||
tension: 0.2, | ||
pointRadius: 0, | ||
data: [], | ||
}, | ||
{ | ||
label: 'Poor CWV', | ||
backgroundColor: cssVariable('--spectrum-red-600'), | ||
borderColor: cssVariable('--spectrum-red-600'), | ||
tension: 0.2, | ||
pointRadius: 0, | ||
data: [], | ||
}, | ||
], | ||
}, | ||
options: { | ||
maintainAspectRatio: false, | ||
plugins: { | ||
legend: { | ||
display: false, | ||
}, | ||
customCanvasBackgroundColor: { | ||
color: 'white', | ||
}, | ||
}, | ||
interaction: { | ||
mode: 'x', | ||
}, | ||
animation: { | ||
duration: 300, | ||
}, | ||
responsive: true, | ||
scales: { | ||
x: { | ||
type: 'time', | ||
display: true, | ||
grid: { | ||
display: false, | ||
}, | ||
border: { | ||
display: false, | ||
}, | ||
offset: true, | ||
time: { | ||
displayFormats: { | ||
day: 'EEE, MMM d', | ||
}, | ||
unit: 'day', | ||
}, | ||
stacked: true, | ||
ticks: { | ||
minRotation: 90, | ||
maxRotation: 90, | ||
autoSkip: false, | ||
}, | ||
}, | ||
y: { | ||
display: false, | ||
stacked: false, | ||
border: { | ||
display: false, | ||
}, | ||
}, | ||
}, | ||
}, | ||
}); | ||
} | ||
|
||
/** | ||
* Defines the series for the chart based on the data chunks | ||
* @param {DataChunks} dataChunks | ||
*/ | ||
defineSeries() { | ||
const { dataChunks } = this; | ||
|
||
dataChunks.addSeries('goodCWV', (bundle) => (scoreBundle(bundle) === 'good' ? bundle.weight : undefined)); | ||
dataChunks.addSeries('poorCWV', (bundle) => (scoreBundle(bundle) === 'poor' ? bundle.weight : undefined)); | ||
dataChunks.addSeries('niCWV', (bundle) => (scoreBundle(bundle) === 'ni' ? bundle.weight : undefined)); | ||
dataChunks.addSeries('noCWV', (bundle) => (scoreBundle(bundle) === null ? bundle.weight : undefined)); | ||
|
||
// interpolated series | ||
dataChunks.addInterpolation( | ||
'iGoodCWV', // name of the series | ||
['goodCWV', 'niCWV', 'poorCWV', 'noCWV'], // calculate from these series | ||
cwvInterpolationFn('goodCWV'), // interpolation function | ||
); | ||
|
||
dataChunks.addInterpolation( | ||
'iNiCWV', | ||
['goodCWV', 'niCWV', 'poorCWV', 'noCWV'], | ||
cwvInterpolationFn('niCWV'), | ||
); | ||
|
||
dataChunks.addInterpolation( | ||
'iPoorCWV', | ||
['goodCWV', 'niCWV', 'poorCWV', 'noCWV'], | ||
cwvInterpolationFn('poorCWV'), | ||
); | ||
|
||
dataChunks.addInterpolation( | ||
'iNoCWV', | ||
['goodCWV', 'niCWV', 'poorCWV', 'noCWV'], | ||
({ | ||
goodCWV, niCWV, poorCWV, noCWV, | ||
}) => { | ||
const valueCount = goodCWV.count + niCWV.count + poorCWV.count; | ||
if (valueCount < INTERPOLATION_THRESHOLD) { | ||
// not enough data to interpolate the other values, so | ||
// we report as if there are no CWV at all | ||
const totalWeight = goodCWV.weight + niCWV.weight + poorCWV.weight + noCWV.weight; | ||
return totalWeight; | ||
} | ||
return 0; | ||
}, | ||
); | ||
} | ||
|
||
async draw() { | ||
const params = new URL(window.location).searchParams; | ||
const view = params.get('view'); | ||
|
||
// eslint-disable-next-line no-unused-vars | ||
const startDate = params.get('startDate'); | ||
const endDate = params.get('endDate'); | ||
|
||
let customView = 'year'; | ||
let unit = 'month'; | ||
let units = 12; | ||
if (view === 'custom') { | ||
const diff = endDate ? new Date(endDate).getTime() - new Date(startDate).getTime() : 0; | ||
if (diff < (1000 * 60 * 60 * 24)) { | ||
// less than a day | ||
customView = 'hour'; | ||
unit = 'hour'; | ||
units = 24; | ||
} else if (diff <= (1000 * 60 * 60 * 24 * 7)) { | ||
// less than a week | ||
customView = 'week'; | ||
unit = 'hour'; | ||
units = Math.round(diff / (1000 * 60 * 60)); | ||
} else if (diff <= (1000 * 60 * 60 * 24 * 31)) { | ||
// less than a month | ||
customView = 'month'; | ||
unit = 'day'; | ||
units = 30; | ||
} else if (diff <= (1000 * 60 * 60 * 24 * 365 * 3)) { | ||
// less than 3 years | ||
customView = 'week'; | ||
unit = 'week'; | ||
units = Math.round(diff / (1000 * 60 * 60 * 24 * 7)); | ||
} | ||
} | ||
|
||
const focus = params.get('focus'); | ||
|
||
if (this.dataChunks.filtered.length < 1000) { | ||
this.elems.lowDataWarning.ariaHidden = 'false'; | ||
} else { | ||
this.elems.lowDataWarning.ariaHidden = 'true'; | ||
} | ||
|
||
const configs = { | ||
month: { | ||
view, | ||
unit: 'day', | ||
units: 30, | ||
focus, | ||
startDate, | ||
endDate, | ||
}, | ||
week: { | ||
view, | ||
unit: 'hour', | ||
units: 24 * 7, | ||
focus, | ||
startDate, | ||
endDate, | ||
}, | ||
year: { | ||
view, | ||
unit: 'week', | ||
units: 52, | ||
focus, | ||
startDate, | ||
endDate, | ||
}, | ||
custom: { | ||
view: customView, | ||
unit, | ||
units, | ||
focus, | ||
startDate, | ||
endDate, | ||
}, | ||
}; | ||
|
||
const config = configs[view]; | ||
|
||
this.config = { ...config, ...this.config }; | ||
this.defineSeries(); | ||
|
||
// group by date, according to the chart config | ||
const group = this.dataChunks.group(this.groupBy); | ||
const chartLabels = Object.keys(group).sort(); | ||
|
||
const { | ||
iGoodCWVs, | ||
iNiCWVs, | ||
iPoorCWVs, | ||
} = Object.entries(this.dataChunks.aggregates) | ||
.sort(([a], [b]) => a.localeCompare(b)) | ||
.reduce((acc, [, totals]) => { | ||
const t = (totals.iGoodCWV.weight + totals.iNiCWV.weight + totals.iPoorCWV.weight) || 1; | ||
acc.iGoodCWVs.push(totals.iGoodCWV.weight / t); | ||
acc.iNiCWVs.push(totals.iNiCWV.weight / t); | ||
acc.iPoorCWVs.push(totals.iPoorCWV.weight / t); | ||
return acc; | ||
}, { | ||
iGoodCWVs: [], | ||
iNiCWVs: [], | ||
iPoorCWVs: [], | ||
}); | ||
|
||
this.chart.data.datasets[0].data = iGoodCWVs; | ||
this.chart.data.datasets[1].data = iNiCWVs; | ||
this.chart.data.datasets[2].data = iPoorCWVs; | ||
|
||
this.chart.data.labels = chartLabels; | ||
this.chart.options.scales.x.time.unit = config.unit; | ||
|
||
this.min = this.chart.options.scales.y.min; | ||
this.stepSize = undefined; | ||
this.clsAlreadyLabeled = false; | ||
this.lcpAlreadyLabeled = false; | ||
|
||
this.chart.update(); | ||
} | ||
} |
Oops, something went wrong.